圖中的△ABC是三角形.


  1. A.
    銳角三角形
  2. B.
    鈍角三角形
  3. C.
    等腰三角形
  4. D.
    直角三角形
D
分析:設(shè)小正方形的邊長是1,可求出各個邊長,從而判定是什么三角形.
解答:設(shè)小正方形的邊長是1,
AB=,BC=,AC=,
∴AB2+AC2=BC2,
∴△ABC是直角三角形.
故選D.
點評:本題考查勾股定理的應(yīng)用和勾股定理逆定理的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

操作實驗:
精英家教網(wǎng)
如圖,把等腰三角形沿頂角平分線對折并展開,發(fā)現(xiàn)被折痕分成的兩個三角形成軸對稱.
所以△ABD≌△ACD,所以∠B=∠C.
歸納結(jié)論:如果一個三角形有兩條邊相等,那么這兩條邊所對的角也相等.
根據(jù)上述內(nèi)容,回答下列問題:
思考驗證:如圖(4),在△ABC中,AB=AC.試說明∠B=∠C的理由;
精英家教網(wǎng)精英家教網(wǎng)
探究應(yīng)用:如圖(5),CB⊥AB,垂足為B,DA⊥AB,垂足為A.E為AB的中點,AB=BC,CE⊥BD.
(1)BE與AD是否相等,為什么?
(2)小明認(rèn)為AC是線段DE的垂直平分線,你認(rèn)為對嗎?說說你的理由;
(3)∠DBC與∠DCB相等嗎試?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=
底邊
=
BC
AB
.容易知道一個角的大小與這個角的正對值也是相精英家教網(wǎng)互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)sad 60°的值為( B。
A.
1
2
;B.1;C.
3
2
;D.2
(2)對于0°<A<180°,∠A的正對值sad A的取值范圍是
 

(3)已知sinα=
3
5
,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,A、B兩點被池塘隔開,為測量AB兩點的距離,在AB外選一點C,連接AC和BC,并分別找出AC和BC的中點M、N,則MN是△ABC的中位線,根據(jù)三角形的中位線定理:三角形的中位線平行于第三邊且等于第三邊的一半,如果測得MN=20m,那么AB=2×20m=40m.
(1)小紅說:測AB距離也可以由圖2所示用三角形全等知識來解決,請根據(jù)題意填空:延長AC到D,使CD=
AC
AC
,延長BC到E,使CE=
BC
BC
,由全等三角形得,AB=ED;
(2)小華說:測AB距離也可以由三角形相似的知識來設(shè)計測量方法,求出AB的長;請根據(jù)題意在如圖3中畫出相應(yīng)的測量圖形:延長AC到H,使CH=2AC,延長BC到Q,使CQ=2BC,連接QH;若測得QH的長是400米,你能測出AB的長嗎?若能,請測出;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AD、CE是兩條高,連接DE,如果BE=2,EA=3,CE=4,在不添加任何輔助線和字母的條件下,請寫出三個正確結(jié)論   (要求:分別為邊的關(guān)系,角的關(guān)系,三角形相似的關(guān)系),并對其中三角形相似的結(jié)論給予證明.
邊的關(guān)系
AC=AB
AC=AB
;
角的關(guān)系
∠CAB=∠B
∠CAB=∠B

三角形相似的關(guān)系
△BED∽△BCA
△BED∽△BCA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:百分學(xué)生作業(yè)本課時3練1測七年級數(shù)學(xué)(下) 華東師大版 題型:044

如圖所示,在銳角三角ABC中,∠ABC=2∠C,AH是BC邊上的高,延長AB到D,使BD=BH,延長DH與AC相交于M,線段HM與圖中的哪些線段相等?請試著找出來,并說明現(xiàn)由.

查看答案和解析>>

同步練習(xí)冊答案