(2002•南京)已知,⊙O1與⊙O2外切,⊙O1的半徑R=2,設(shè)⊙O2的半徑為r,
(1)如果⊙O1與⊙O2的圓心距d=4,求r的值;
(2)如果⊙O1與⊙O2的公切線中有兩條互相垂直,并且r≤R,求r的值.
【答案】分析:(1)根據(jù)兩圓外切,圓心距等于兩圓半徑之和進(jìn)行計算;
(2)根據(jù)切線長定理和切線的性質(zhì)定理發(fā)現(xiàn)兩個等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得到方程進(jìn)行計算.
解答:解:(1)如圖,根據(jù)相外切兩圓的性質(zhì)得出:r=4-2=2;

(2)如圖:根據(jù)切線長定理得到等腰直角三角形,
則有2+r=(2-r):
;

當(dāng)是第二情況時,當(dāng)R=r時,如圖,此時四邊形AO1O2B、AO1CD、DCO2B都是矩形,
即此時R=r=2;
即r=6-4或2.
點評:考查了兩圓的位置關(guān)系與數(shù)量之間的聯(lián)系,能夠熟練運用切線的性質(zhì)定理和切線長定理.根據(jù)等腰直角三角形的性質(zhì)找到線段之間的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•南京)已知拋物線y=a(x-t-1)2+t2(a,t是常數(shù),a≠0,t≠0)的頂點是A,拋物線y=x2-2x+1的頂點是B.
(1)判斷點A是否在拋物線y=x2-2x+1上,為什么?
(2)如果拋物線y=a(x-t-1)2+t2經(jīng)過點B,
①求a的值;
②這條拋物線與x軸的兩個交點和它的頂點A能否構(gòu)成直角三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年江蘇省南京市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•南京)已知拋物線y=a(x-t-1)2+t2(a,t是常數(shù),a≠0,t≠0)的頂點是A,拋物線y=x2-2x+1的頂點是B.
(1)判斷點A是否在拋物線y=x2-2x+1上,為什么?
(2)如果拋物線y=a(x-t-1)2+t2經(jīng)過點B,
①求a的值;
②這條拋物線與x軸的兩個交點和它的頂點A能否構(gòu)成直角三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2002•南京)已知:如圖,⊙O1與⊙O2相交于A、B兩點,O1在⊙O2上,⊙O2的弦BC切⊙O1于B,延長BO1、CA交于點P、PB與⊙O1交于點D.
(1)求證:AC是⊙O1的切線;
(2)連接AD、O1C,求證:AD∥O1C;
(3)如果PD=1,⊙O1的半徑為2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圖形認(rèn)識初步》(02)(解析版) 題型:填空題

(2002•南京)已知:∠AOB=40°,OC是∠AOB的平分線,則∠AOC的余角度數(shù)是    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一元二次方程》(05)(解析版) 題型:解答題

(2002•南京)已知:關(guān)于x的方程x2-kx-2=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)設(shè)方程的兩根為x1,x2,如果2(x1+x2)>x1x2,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案