【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點E,∠CDB的平分線DF交BC于點F.求證:△ABE≌△CDF.
【答案】證明:□ABCD中,AB=CD,∠A=∠C, AB∥CD ∴∠ABD=∠CDB
∵∠ABE=∠ABD,∠CDF=∠CDB ∴∠ABE=∠CDF
在△ABE與△CDF中
∴△ABE≌△CDF.
【解析】試題分析:首先根據(jù)角平分線性質與平行線性質證明∠ABD=∠CDB,再根據(jù)平行四邊形性質證出CD=AB,∠A=∠C,可利用ASA定理判定△ABE≌△CDF.
試題解析:
在平行四邊形ABCD中,AB=CD,∠A=∠C.
∵AB∥CD,∴∠ABD=∠CDB
∵BE平分∠ABD,DF平分∠CDB,
∴∠ABE=∠ABD,∠CDF=∠CDB.
∴∠ABE=∠CDF.
在△ABE和△CDF中,
∵∠A=∠C,AB=CD,∠ABE=∠CDF,
∴△ABE≌△CDF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 在東西方向的海岸線MN上有相距10海里的A、B兩艘船,均收到已觸礁擱淺的船P的求救信號,已知船P在船A的北偏東60°方向上,船P在船B的北偏西45°方向上.求船P到海岸線MN的距離(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,在正方形ABCD中,AB=1, 是以點B為圓心,AB長為半徑的圓的一段弧,點E是邊AD上的動點(點E與點A,D不重合),過E作所在圓的切線,交邊DC于點F,G為切點.
(1)求證:EA=EG;
(2)設AE=x,F(xiàn)C=y,求y關于x的函數(shù)關系式,并直接寫出x的取值范圍;
(3)如圖2所示,將△DEF沿直線EF翻折后得△D1EF,連接AD1,D1D,試探索:當點E運動到何處時,△AD1D與△ED1F相似?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A(0,1),M(3,2),N(4,4).動點P從點A出發(fā),沿軸以每秒1個單位長的速度向上移動,且過點P的直線l:y=-x+b也隨之移動,設移動時間為t秒.
(1)當t=3時,求l的解析式;
(2)若點M,N位于l的異側,確定t的取值范圍;
(3)直接寫出t為何值時,點M關于l的對稱點落在坐標軸上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中,點A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原點為位似中心將△ABC縮小,位似比為1:2,則點B的對應點的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D是等邊△ABC中BC邊上一點,過點D分別作DE∥AB,DF∥AC,交AC,AB于E,F,連接BE,CF,分別交DF,DE于點N,M,連接MN.試判斷△DMN的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點D落在D′處,則重疊部分△AFC的面積是( )
A.8
B.10
C.20
D.32
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于, 兩點.
()試確定上述反比例函數(shù)和一次函數(shù)的表達式.
()求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com