如圖,在長方形ABCD中,點E在BC上,點F在CD上,已知AB=6,AD=5,BE=2,CF=1,連接AE、EF、AF
(1)S△AEF=
20
20
(直接填空)
(2)求證:△AEF為直角三角形.
分析:(1)由題意可知S△AEF=S矩形ABCD-S△ABE-S△FCE-S△ADF根據(jù)三角形的面積公式在分別計算即可;
(2)根據(jù)勾股定理分別計算AE,EF,AF的長,再根據(jù)勾股定理的逆定理判定即可.
解答:解:(1)∵四邊形ABCD是矩形,
∴AB=DC=6,AD=BC=5,
∴DF=DC-CF=4,CE=BC-BE=3,
∴S△AEF=S矩形ABCD-S△ABE-S△FCE-S△ADF=20,
故答案為:20;
(2)∵∠B=90°,AB=6,BE=2,
∴AE2=AB2+BE2=40,
同理可得:EF2=CF2+CE2=10,AF2=AD2+DF2=50,
∴AE2+EF2=AF2,
∴△AEF為直角三角形.
點評:本題考查了矩形的性質(zhì),三角形的面積公式以及勾股定理和其逆定理的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在長方形ABCD(對邊相等,四角都是直角)中,將△ABC沿AC對折至△AEC位置,CE與AD交精英家教網(wǎng)于點F.
(1)求證:△AFC是等腰三角形;
(2)若∠ACB=30°,BC=12cm,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中點,以D作DE⊥AC與CB的延長線交于E,以AB、BE為鄰邊作長方形ABEF,連接DF,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在長方形網(wǎng)格中,每個小長方形的長為2,寬為1,A、B兩點在網(wǎng)格格點上.
(1)若點C也在網(wǎng)格格點上,以A、B、C為頂點的三角形面積為2,則滿足條件的點C有
7
7
個.
(2)選取其中一個C點連△ABC,作出△ABC關(guān)于直線L對稱的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015屆江蘇省蘇州市八年級上學(xué)期期中模擬數(shù)學(xué)試卷(解析版) 題型:解答題

(8分)如圖,在長方形ABCD中,將△ABC沿AC對折至△AEC位置,CE與AD交于點F.

(1)試說明:AF=FC;

(2)如果AB=3,BC=4,求AF的長.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北師大版九年級(上)期末數(shù)學(xué)復(fù)習(xí)水平測試卷(解析版) 題型:解答題

如圖,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中點,以D作DE⊥AC與CB的延長線交于E,以AB、BE為鄰邊作長方形ABEF,連接DF,求DF的長.

查看答案和解析>>

同步練習(xí)冊答案