(2008•湘西州)甲、乙兩建筑物相距10米,小明在乙建筑物A處看到甲建筑物樓頂B點的俯角為45°,看到樓底C點的俯角為60°,求甲建筑物BC的高.
(精確到0.1米,≈1.732,≈1.414)

【答案】分析:在Rt△OAB和Rt△OAC中,知道已知角和鄰邊,直接根據(jù)正切求出對邊,然后由BC=OC-OB即可求得BC的值.
解答:解:由題意可知:OA=10m,∠BAO=45°,∠CAO=60°,OC⊥OA;
∵在Rt△AOB中,∠BAO=45°,OA=10m,
∴OB=OA=10m;
又∵在Rt△AOC中,∠CAO=60°,OA=10m,
∴OC=•OA=10;
∴BC=OC-OB=10-10
≈10×1.732-10
≈7.3m;
答:甲建筑物BC的高約為7.3m.
點評:本題要求學生借助俯角關(guān)系構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(19)(解析版) 題型:解答題

(2008•湘西州)已知拋物線y=-(x+2)2+k與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,C點在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根.
(1)求A、B、C三點的坐標;
(2)在平面直角坐標系內(nèi)畫出拋物線的大致圖象并標明頂點坐標;
(3)連AC、BC,若點E是線段AB上的一個動點(與A、B不重合),過E作EF∥AC交BC于F,連CE,設(shè)AE=m,△CEF的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上說明S是否存在最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2008•湘西州)已知反比例函數(shù)y=的圖象與一次函數(shù)y=x+m的圖象相交于點(1,-3).
(1)求這兩個函數(shù)的解析式;
(2)求這兩個函數(shù)圖象的另一個交點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2008•湘西州)已知反比例函數(shù)y=的圖象與一次函數(shù)y=x+m的圖象相交于點(1,-3).
(1)求這兩個函數(shù)的解析式;
(2)求這兩個函數(shù)圖象的另一個交點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年廣東省廣州市荔灣區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2008•湘西州)已知反比例函數(shù)y=的圖象與一次函數(shù)y=x+m的圖象相交于點(1,-3).
(1)求這兩個函數(shù)的解析式;
(2)求這兩個函數(shù)圖象的另一個交點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖南省湘西州中考數(shù)學試卷(解析版) 題型:解答題

(2008•湘西州)已知拋物線y=-(x+2)2+k與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,C點在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根.
(1)求A、B、C三點的坐標;
(2)在平面直角坐標系內(nèi)畫出拋物線的大致圖象并標明頂點坐標;
(3)連AC、BC,若點E是線段AB上的一個動點(與A、B不重合),過E作EF∥AC交BC于F,連CE,設(shè)AE=m,△CEF的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上說明S是否存在最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案