如圖,△ABC為等腰三角形,∠ACB=90°,AD平分∠CAB,DE⊥AB于E,AB=8cm,則△DEB的周長為( )cm.

A.4
B.6
C.8
D.10
【答案】分析:先證△CAD≌△EAD,再求B=∠BDE=45°,則BE=DE,故能求出△DEB的周長.
解答:解:∵∠ACB=90°,AD平分∠CAB,DE⊥AB于E,
∴∠C=∠AED=90°,∠CAD=∠EAD
∵AD為公共邊
∴△CAD≌△EAD
∴AC=AE,CD=DE
∵△ABC為等腰三角形,DE⊥AB
∴∠B=∠BDE=45°
∴BE=DE
∵△DEB的周長=DE+BD+BE=CD+BD+BE=BC+BE=AC+BE=AE+BE=AB=8cm.
故選C.
點(diǎn)評:此題考查了角平分線的性質(zhì)和等腰三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,△ABC為等腰三角形,AB=AC,∠A=40°,D,E,F(xiàn)分別在BC,AC,AB上,且CE=CD,BD=BF,則∠EDF的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC為等腰直角三角形,它的面積為8平方厘米,以它的斜邊為邊的正方形BCDE的面積為(  )平方厘米.
A、16B、24C、64D、32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等腰直角三角形∠BAC=90°,AD是斜邊BC上的中線,△ABD旋轉(zhuǎn)到△ACE的位置.
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?旋轉(zhuǎn)角度是多少度?
(2)四邊形ADCE是正方形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•六合區(qū)一模)如圖,△ABC為等腰直角三角形,∠C=90°,若在某一平面直角坐標(biāo)系中,頂點(diǎn)C的坐標(biāo)為(1,1),B的坐標(biāo)為(2,0).則頂點(diǎn)A的坐標(biāo)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等腰三角形,如果把它沿底邊BC翻折后,得到△DBC,那么四邊形ABDC為( 。

查看答案和解析>>

同步練習(xí)冊答案