如圖,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形AOCB是梯形,AB∥OC,點(diǎn)A在y軸上,點(diǎn)C在x軸上,且,OB=OC.
【小題1】求點(diǎn)B的坐標(biāo);
【小題2】點(diǎn)P從C點(diǎn)出發(fā),沿線段CO以5個(gè)單位/秒的速度向終點(diǎn)O勻速運(yùn)動(dòng),過點(diǎn)P作PH⊥OB,垂足為H,設(shè)△HBP的面積為S(S≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式(直接寫出自變量t的取值范圍);
【小題3】在(2)的條件下,過點(diǎn)P作PM∥CB交線段AB于點(diǎn)M,過點(diǎn)M作MR⊥OC,垂足為R,線段MR分別交直線PH、OB于點(diǎn)E、G,點(diǎn)F為線段PM的中點(diǎn),聯(lián)結(jié)EF.
①判斷EF與PM的位置關(guān)系;
②當(dāng)t為何值時(shí),?

【小題1】如圖1,過點(diǎn)B作BN⊥OC,垂足為N
,OB=OC
∴OA=8,OC="10     " -------------------------------1分
∴OB="OC=10," BN=OA=8
 
∴B(6,8)          ----------------------------------------------2分
【小題2】如圖1,∵∠BON=∠POH, ∠ONB=∠OHP=90°. 
∴△BON∽△POH   ∴
∵PC="5t.  " ∴OP="10-5t.   " ∴OH="6-3t." PH=8-4t.
∴BH="OB-OH=10-(6-3t)=3t+4   "
 ------------------------------------ 3分
∴t的取值范圍是:0≤t<2       ------------------------------------------4分
【小題3】①EF⊥PM                         ----------------------------------------------------5分
∵M(jìn)R⊥OC,PH⊥OB
∴∠RPM+∠RMP=90°,∠HPD+∠HDP=90° 
∵OC="OB     " ∴∠OCB=∠OBC.
∵BC∥PM
∴∠RPM=∠HDP,∴∠RMP=∠HPD,即:∠ EMP=∠HPM
∴EM=EP
∵點(diǎn)F為PM的中點(diǎn)   ∴EF⊥PM       ----------6分
②如圖2過點(diǎn)B作BN′⊥OC,垂足為 N′,

BN′=8,CN′=4
∵BC∥PM,MR⊥OC
∴△MRP≌△B N′C
∴PR="C" N′=4
設(shè)EM=x,則EP=x
在△PER中,∠ERP=90°,RE=MR-ME=8-x
,∴x=5
∴ME=5
∵△MGB∽△N′BO     

∵ PM∥CB,AB∥OC
∴四邊形BMPC是平行四邊形. ∴ BM=PC=5t.
第一種情況:當(dāng)點(diǎn)G在點(diǎn)E上方時(shí)(如圖2)
∵EG=2,∴MG=EM-EG=5-2=3
 ∴t=                                 --------------------7分
第二種情況:當(dāng)點(diǎn)G在點(diǎn)E下方時(shí)(如圖3)
 MG=ME+EG=5+2=7,
 ,∴t=         -------------------------------------------8分
∴當(dāng)t=時(shí),.解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案