如圖,已知AD是△ABC的中線,∠ADC=45°,把△ADC沿AD對折,點(diǎn)C落在點(diǎn)E的位置,連接BE,若BC=6cm.
(1)求BE的長;
(2)當(dāng)AD=4cm時(shí),求四邊形BDAE的面積.

【答案】分析:(1)由折疊可知:△ADC≌△ADE,∠EDC=2∠ADC=90°,ED=DC,又BD=DC,△BDE是等腰直角三角形,可求BE長;
(2)由(1)知,∠BED=45°,∠EDA=45°,∴四邊形BDAE是梯形,已知上底AD=4,下底BE=3,為求梯形高,過D作DF⊥BE于點(diǎn)F,DF實(shí)際上就是等腰直角三角形BDE斜邊上的高,可求長度.
解答:解:
(1)由題意,有ED=DC,∠ADE=∠ADC=45°,
∴∠EDC=90°.
又AD為△ABC的中線,
∴CD=BC=3cm,ED=DC=BD=3(cm).
在Rt△BDE中,由勾股定理,有BE===3(cm).

(2)在Rt△BDE中,
∵BD=DE,∴∠EBD=45°.
∴∠EBD=∠ADC=45°.
∴BE∥AD.∴BDAE是梯形.
過D作DF⊥BE于點(diǎn)F.

在Rt△BDE中,有BD•DE=BE•DF
∴DF=(cm).
∴S梯形BDAE=(BE+AD)•DF=(3+4)×=(+3)cm2
點(diǎn)評:本題考查圖形的折疊與拼接,同時(shí)考查了三角形、四邊形等幾何基本知識,解題時(shí)應(yīng)分別對每一個(gè)圖形進(jìn)行仔細(xì)分析.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,已知AD是△ABC的角平分線,CE⊥AD,垂足O,CE交AB于E,則下列命題:①AE=AC,②CO=OE,③∠AEO=∠ACO,④∠B=∠ECB.其中正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,已知AD是△ABC的角平分線,在不添加任何輔助線的前提下,要使△AED≌△AFD,需添加一個(gè)條件是:
AE=AF或∠EDA=∠FDA
,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AD是等腰三角形ABC底邊上的高,AD與底邊BC的比是2:3,等腰三角形的面積是12cm,求等腰三角形ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD是△ABC的中線,∠ADC=45°,把△ABC沿AD對折,點(diǎn)C落在點(diǎn)E的位置,連接BE,若BC=6cm.
(1)求BE的長;
(2)當(dāng)AD=4cm時(shí),求四邊形BDAE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD是△ABC的角平分線,DE∥AB交AC于點(diǎn)E.那么△ADE是等腰三角形嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案