已知:如圖,在△ABC中,∠ABC=45°,CD⊥AB于點D,BE平分∠ABC,且BE⊥AC于點E,與CD相交于點F.H是BC邊的中點,連接DH與BE相交于點G.
(1)求證:△ABC是等腰三角形;
(2)若過點G作GM∥BC,交DC于點M,其他條件不變,求證:DF=CM;
(3)若把題目中“BE平分∠ABC”改為“BE平分線段DC”,其他條件不變,連接HF.求證:HF=AD.
分析:(1)根據(jù)角平分線的定義可得∠ABE=∠CBE,根據(jù)等角的余角相等求出∠A=∠BCA,再根據(jù)等角對等邊可得AB=BC,從而得證;
(2)過點F作FN⊥BC于N,根據(jù)角平分線上的點到角的兩邊的距離相等可得FD=FN,根據(jù)等角的余角相等求出∠2=∠3,然后根據(jù)等角對等邊可得DG=DF,從而得到DF=FN,再判斷出△BDC是等腰直角三角形,再求出∠GDM=∠NFC=45°,然后利用“角邊角”證明△DGM和△FNC全等,根據(jù)全等三角形對應邊相等可得DM=FC,再求出DF=CM即可;
(3)根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得HF=DF,再利用“角角邊”證明△ACD和△BFD全等,根據(jù)全等三角形對應邊相等可得AD=DF,從而得證.
解答:(1)證明:∵BE平分∠ABC,
∴∠ABE=∠CBE,
∵CD⊥AB,
∴∠ABE+∠A=90°,∠CBE+∠ACB=90°,
∴∠A=∠BCA,
∴AB=BC,
∴△ABC是等腰三角形;

(2)證明:如圖,過點F作FN⊥BC于N,
∵BE平分∠ABC,
∴FD=FN,
∵∠ABE+∠3=90°,∠CBE+∠1=90°,∠1=∠2,
∴∠2=∠3,
∴DG=DF,
∴DF=DF=FN,
∵∠ABC=45°,CD⊥AB,
∴△BDC是等腰直角三角形,
∵DH⊥BC,
∴∠GDM=∠NFC=45°,
在△DGM和△FNC中,
∠GDM=∠NFC
DG=FN
∠DGM=∠FNC
,
∴△DGM≌△FNC(ASA),
∴DM=FC,
∴DM-FM=FC-FM,
即DF=CM;

(3)證明:如圖,連接FH,∵DH⊥BC,BE平分線段CD,
∴HF=DF=
1
2
CD,
∵△BCD是等腰直角三角形,
∴BD=CD,
∵BE⊥AC,
∴∠DBF+∠A=90°,
∵CD⊥AB,
∴∠ACD+∠A=90°,
∴∠DBF=∠ACD,
在△ACD和△BFD中,
∠DBF=∠ACD
BD=CD
∠BDF=∠ADC=90°
,
∴△ACD≌△BFD(ASA),
∴AD=DF,
∴HF=AD.
點評:本題考查了全等三角形的判定與性質,等腰直角三角形的判定與性質,直角三角形斜邊上的中線等于斜邊的一半的性質,平行線的性質,熟練掌握三角形全等的判定方法并作輔助線構造出全等三角形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結果保留根號和π)《根據(jù)2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當AE=BC時,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結BD,CE,BD與CE交于O,連結AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習冊答案