【題目】基本事實:兩角及其夾邊分別相等的兩個三角形全等(簡稱).請你在此基礎(chǔ)上解決下面問題:
(1)敘述三角形全等的判定方法中的;
(2)證明.要求:敘述要用文字表達;用圖形中的符號表達已知、求證,并證明,證明時各步驟要注明依據(jù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(基礎(chǔ)運用)
如圖①所示,直線L:y=x+5與x軸負(fù)半軸,y軸正半軸分別交于A、B兩點.
(1)點A坐標(biāo)為 ,S△OAB= ;
(2)如圖②所示,設(shè)Q為AB延長線上一點,作直線OQ,過A、B兩點分別作AM⊥OQ于M,BN⊥OQ于N,①求證:△AOM≌△OBN;②若AM=4,求MN的長;
(思維延伸)直線L:y=mx+5m與x軸負(fù)半軸,y軸正半軸分別交于A、B兩點.
(3)當(dāng)m取不同的值時,點B在y軸正半軸上運動,分別以OB、AB為邊,點B為直角頂點在第 一、二象限內(nèi)作等腰直角△OBF和等腰直角△ABE,連EF交y軸于P點,如圖③.問:當(dāng)點B在y軸正半軸上運動時,試猜想線段PE與線段PF的數(shù)量關(guān)系并證明;
(4)如圖③,當(dāng)m取不同的值時,點B在y軸正半軸上運動,以AB為邊在第二象限作等腰直角△ABE,則動點E在直線 上運動.(直接寫出直線的表達式)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點,且滿足∠BAC=∠APC=60°,
(1)求證:△ABC是等邊三角形;
(2)求圓心O到BC的距離OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象過點A(3,0),對稱軸為直線x=1,給出以下結(jié)論:①abc<0;②b2﹣4ac>0;③a+b+c≥ax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)為函數(shù)圖象上的兩點,則y1<y2,其中正確的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關(guān)的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+bx+c與x軸交于A(﹣3,0),B(1,0)兩點,與y軸交于點C.
(1)求該拋物線的解析式;
(2)在拋物線上求一點P,使S△PAB=S△ABC,寫出P點的坐標(biāo);
(3)在拋物線的對稱軸上是否存在點Q,使得△QBC的周長最?若存在,求出點Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC的長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,以大于EF長為半徑作圓弧,兩條弧交于點G,作射線AG交CD于點H,若∠C=120°,則∠AHD=( )
A. 120° B. 30° C. 150° D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx經(jīng)過點A(2,4)和點B(6,0).
(1)求這條拋物線所對應(yīng)的二次函數(shù)的解析式;
(2)直接寫出它的開口方向、頂點坐標(biāo);
(3)點(x1,y1),(x2,y2)均在此拋物線上,若x1>x2>4,則y1 ________ y2(填“>”“=”或“<”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于點D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )
A. 4cm B. 6cm C. 8cm D. 10cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com