觀察下列等式;
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
將以上三個等式兩邊分別相加得;
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并寫出
1
n(n+1)
=
 
;
(2)計算
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2009×2010
;
(3)計算
1
2
+
1
6
+
1
12
+
1
20
+…+
1
90
;
(4)計算
1
4
+
1
12
+
1
24
+
1
40
+…+
1
180
分析:(1)由規(guī)律得
1
n(n+1)
=
1
n
-
1
n+1
;
(2)由(1)的規(guī)律,分別將每一個式子寫成兩個分數(shù)差的形式,再計算;
(3)逆用規(guī)律,再計算;
(4)根據(jù)
1
4
+
1
12
+
1
24
+
1
40
+…+
1
180
=
1
2
1
2
+
1
6
+
1
12
+
1
20
+…+
1
90
)計算即可.
解答:解:(1)
1
n
-
1
n+1
(2分)
(2)原式=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
2009
-
1
2010

=1-
1
2010

=
2009
2010
(6分)
(3)原式=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10

=1-
1
10

=
9
10
(10分)
(4)原式=
1
2
×
1
2
+
1
2
×
1
6
+
1
2
×
1
12
+…+
1
2
×
1
90

=
1
2
1
2
+
1
6
+
1
12
+
1
20
+…+
1
90

=
1
2
×
9
10

=
9
20
(14分)
點評:本題考查了利用規(guī)律解題,解決此題的關(guān)鍵是題目給出的規(guī)律:
1
1×2
+
1
2×3
+…+
1
n(n+1)
=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

觀察下列等式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,將以上三個等式兩邊分別相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并寫出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
;
(2)計算:
1
1×2
+
1
2×3
+
1
3×4
+
+
1
n(n+1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,
把以上三個等式兩邊分別相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并寫出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)直接寫出下列各式的計算結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2008×2009
=
2008
2009
2008
2009
;
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1

(3)探究并計算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2006×2008

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

附加題:
(1)已知|a-2|+|b+6|=0,則a+b=
-4
-4

(2)觀察下列等式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,將以上三個等式相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

①猜想并寫出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

②直接寫出結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2006×2007
=
2006
2007
2006
2007

(3)在數(shù)軸上有兩點,它們到原點的距離分別是2和3,問這兩點之間的距離是多少?
(4)求|
1
2
-1|+|
1
3
-
1
2
|+…+|
1
99
-
1
98
|+|
1
100
-
1
99
|的值.
(5)如圖所示,數(shù)軸上有四點A,B,C,D分別表示有理數(shù)a,b,c,d,用“<”把表示a,b,c,d,|a|,|b|,-|c|,-|d|的數(shù)連接起來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察下列等式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,將以上三個等式相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并寫出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)直接寫出結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2006×2007
=
2006
2007
2006
2007

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察下列等式:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)直接寫出下列各式的計算結(jié)果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2006×2007
=
2006
2007
2006
2007

(2)探究并計算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2006×2008

查看答案和解析>>

同步練習冊答案