【題目】如圖,在平面直角坐標系中,O為原點,直線AB分別與x軸、y軸交于點B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點E,若tan∠ABO= ,OB=4,OE=2,點D的坐標為(6,m).
(1)求直線AB和反比例函數(shù)的解析式;
(2)求△OCD的面積.

【答案】
(1)解:∵在直角△BCE中,tan∠ABO= = ,BE=OE+OB=4+2=6,

∴EC=BEtan∠ABO=6× =3.

∴C的坐標是(﹣2,3).

設(shè)反比例函數(shù)的解析式是y=

把C的坐標代入得:3= ,

解得:k=﹣6,

則反比例函數(shù)的解析式是:y=﹣

B的坐標是(4,0).

∵在直角△AOB中,tan∠ABO= =

∴OA=OBtan∠ABO=4× =2,

則A的坐標是(0,2),

設(shè)直線AB的解析式是y=kx+b,

根據(jù)題意得: ,

解得:

則直線AB的解析式是:y=﹣ x+2


(2)解:解方程組: ,

解得: ,

則D的坐標是:(6,﹣1).

∵OA=2

∴SCOD=SOAC+SOAD= ×2×2+ ×2×6=2+6=8


【解析】(1)在直角△BCE中,BE=6,利用三角函數(shù)即可求得CE的長,則C的坐標即可求解,然后利用待定系數(shù)法即可求得反比例函數(shù)的解析式;(2)在直角△ABO中,利用三角函數(shù)即可求得OA的長,則A,B的坐標已知,利用待定系數(shù)法即可求得直線的解析式;(3)首先求得D的坐標,根據(jù)SCOD=SOAC+SOAD即可求解.
【考點精析】認真審題,首先需要了解解直角三角形(解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,解答問題.

飲水問題是關(guān)系到學生身心健康的重要生活環(huán)節(jié),東坡中學共有教學班24,平均每班有學生50,經(jīng)估算,學生一年在校時間約為240(除去各種節(jié)假日),春、夏、秋、冬季各60.原來,學生飲水一般都是購純凈水(其他碳酸飲料或果汁價格更高),純凈水零售價為1.5/,每個學生春、秋、冬季平均每天買1瓶純凈水,夏季平均每天要買2瓶純凈水,學校為了減輕學生消費負擔,要求每個班自行購買1臺冷熱飲水機,經(jīng)調(diào)查,購買一臺功率為500 W的冷熱飲水機約為150,純凈水每桶6,每班春、秋兩季,平均每1.5天購買4,夏季平均每天購買5,冬季平均每天購買1,飲水機每天開10小時,當?shù)孛裼秒妰r為0.50/.

問題:

(1)在未購買飲水機之前,全年平均每個學生要花費多少錢來購買純凈水飲用?

(2)在購買飲水機解決學生飲水問題后,每班當年共要花費多少元?

(3)這項便利學生的措施實施后,東坡中學當年全體學生共節(jié)約多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:拋物線y=ax2﹣2(a﹣1)x+a﹣2(a>0).
(1)求證:拋物線與x軸有兩個交點;
(2)設(shè)拋物線與x軸有兩個交點的橫坐標分別為x1 , x2 , (其中x1>x2).若y是關(guān)于a的函數(shù),且y=ax2+x1 , 求這個函數(shù)的表達式;
(3)在(2)的條件下,結(jié)合函數(shù)的圖象回答:若使y≤﹣3a2+1,則自變量a的取值范圍為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列結(jié)論:w

①若a+b+c=0,且abc≠0,則方程a+bx+c=0的解是x=1;

②若a(x﹣1)=b(x﹣1)有唯一的解,則a≠b;

③若b=2a,則關(guān)于x的方程ax+b=0(a≠0)的解為x=﹣

④若a+b+c=1,且a≠0,則x=1一定是方程ax+b+c=1的解;

其中結(jié)論正確個數(shù)有( )

A.4個 B.3個 C.2個 D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為增強居民節(jié)約用水意識,某市在2018年開始對供水范圍內(nèi)的居民用水實行“階梯收費”,具體收費標準如下表:

某戶居民四月份用水10 m3時,繳納水費23元.

(1) a的值;

(2) 若該戶居民五月份所繳水費為71元,求該戶居民五月份的用水量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸是初中數(shù)學教材中數(shù)形結(jié)合的第一個實例,它包括原點,正方向和長度單位三要素,每一個實數(shù)都可以用數(shù)軸上的一個點來表示.

數(shù)軸上某一個點所對應的數(shù)為,另一個點對應的數(shù)為,則這兩點之間的距離為________;

數(shù)軸上的數(shù)對應的點為,點位于點的右邊,距個長度單位,為線段上的一點,,電子螞蟻、分別從同時出發(fā),相向而行,的速度為個長度單位/秒,的速度為個長度單位/秒.

①當點距離相同時,求運動時間

②若電子螞蟻通過秒后與電子螞蟻相遇,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=2AD, AH⊥BC于點H,ECD的中點,連接AE、 BE、HE.

(1)求證: AE⊥BE

(2)求證:∠DEH=3 ∠ EHC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按下列程序計算,把答案填寫在表格內(nèi),然后觀察有什么規(guī)律,想一想:為什么會有這個規(guī)律?

(1)填寫表內(nèi)空格:

輸入

-3

-2

-1

0

輸出答案

9

(2)發(fā)現(xiàn)的規(guī)律是:輸入數(shù)據(jù)x,則輸出的答案是__________;

(3)為什么會有這個規(guī)律?請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線L1∥L2 , 圓O與L1和L2分別相切于點A和點B,點M和點N分別是L1和L2上的動點,MN沿L1和L2平移,圓O的半徑為1,∠1=60°,當MN與圓相切時,AM的長度等于

查看答案和解析>>

同步練習冊答案