【題目】因式分解
(1)﹣2x2y+12xy﹣18y
(2)2x2y﹣8y.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,邊長為4,點(diǎn)G在邊BC上運(yùn)動(dòng),DE⊥AG于E,BF∥DE交AG于點(diǎn)F,在運(yùn)動(dòng)過程中存在BF+EF的最小值,則這個(gè)最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對稱軸與x軸交于點(diǎn)D,點(diǎn)E(4,n)在拋物線上.
(1)求直線AE的解析式;
(2)點(diǎn)P為直線CE下方拋物線上的一點(diǎn),連接PC,PE.當(dāng)△PCE的面積最大時(shí),連接CD,CB,點(diǎn)K是線段CB的中點(diǎn),點(diǎn)M是CP上的一點(diǎn),點(diǎn)N是CD上的一點(diǎn),求KM+MN+NK的最小值;
(3)點(diǎn)G是線段CE的中點(diǎn),將拋物線沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點(diǎn)D,y′的頂點(diǎn)為點(diǎn)F.在新拋物線y′的對稱軸上,是否存在一點(diǎn)Q,使得△FGQ為等腰三角形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A. (a-b)2=a2+2ab+b2 B. a3a3=2a3 C. (ab2)2=a4b4 D. (a2)3=a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列一段文字,然后回答下列問題.
已知在平面內(nèi)兩點(diǎn)P1(x1 , y1)、P2(x2 , y2),其兩點(diǎn)間的距離 ,
同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可簡化為|x2﹣x1|或|y2﹣y1|.
(1)已知A(2,4)、B(﹣3,﹣8),試求A、B兩點(diǎn)間的距離;
(2)已知A、B在平行于y軸的直線上,點(diǎn)A的縱坐標(biāo)為4,點(diǎn)B的縱坐標(biāo)為﹣1,試求A、B兩點(diǎn)間的距離;
(3)已知一個(gè)三角形各頂點(diǎn)坐標(biāo)為D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形狀嗎?說明理由;
(4)平面直角坐標(biāo)中,在x軸上找一點(diǎn)P,使PD+PF的長度最短,求出點(diǎn)P的坐標(biāo)以及PD+PF的最短長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列已知條件,能夠畫出唯一△ABC的是( )
A. AB=5,BC=6,∠A=70° B. AB=5,BC=6,AC=13
C. ∠A=50°,∠B=80°,AB=8 D. ∠A=40°,∠B=50°,∠C=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景點(diǎn)的門票價(jià)格如表:
購票人數(shù)/人 | 1~50 | 51~100 | 100以上 |
每人門票價(jià)/元 | 12 | 10 | 8 |
某校七年級(1)、(2)兩班計(jì)劃去游覽該景點(diǎn),其中(1)班人數(shù)少于50人,(2)班人數(shù)多于50人且少于100人,如果兩班都以班為單位單獨(dú)購票,則一共支付1118元;如果兩班聯(lián)合起來作為一個(gè)團(tuán)體購票,則只需花費(fèi)816元.
(1)兩個(gè)班各有多少名學(xué)生?
(2)團(tuán)體購票與單獨(dú)購票相比較,兩個(gè)班各節(jié)約了多少錢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com