【題目】在平面直角坐標(biāo)xOy中,直線y=kx+1(k≠0)與雙曲線y= (m≠0)的一個交點(diǎn)為A(﹣2,3),與x軸交于點(diǎn)B.
(1)求m的值和點(diǎn)B的坐標(biāo);
(2)點(diǎn)P在y軸上,點(diǎn)P到直線y=kx+1(k≠0)的距離為 ,直接寫出點(diǎn)P的坐標(biāo).

【答案】
(1)解:∵雙曲線y= (m≠0)經(jīng)過點(diǎn),A(﹣2,3),

∴m=﹣6,

∵直線y=kx+1(k≠0)經(jīng)過點(diǎn)A(﹣2,3),

∴k=﹣1,

∴y=﹣x+1,

令y=0,則﹣x+1=0,

∴x=1,

∴B(1,0)


(2)解:∵點(diǎn)P在y軸上,

∴設(shè)P(0,n),

∵點(diǎn)P到直線y=﹣x+1(k≠0)的距離為 ,

= ,

∴n=3,n=﹣1,

∴P(0,3)或(0,﹣1)


【解析】(1)把A(﹣2,3)分別代入y=kx+1(k≠0)與雙曲線y= (m≠0)即可得到結(jié)論;(2)設(shè)P(0,n),根據(jù)已知條件列方程即可得到結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年1月,由于霧霾天氣持續(xù)籠罩我國中東部大部分地區(qū),口罩市場出現(xiàn)熱賣,某旗艦網(wǎng)店用8000元購進(jìn)甲、乙兩種口罩,銷售完后共獲利2800元,進(jìn)價和售價如下表:

品名
價格

甲種口罩

乙種口罩

進(jìn)價(元/袋)

20

25

售價(元/袋)

26

35


(1)求該網(wǎng)店購進(jìn)甲、乙兩種口罩各多少袋?
(2)該網(wǎng)店第二次以原價購進(jìn)甲、乙、兩種口罩,購進(jìn)乙種口罩袋數(shù)不變,而購進(jìn)甲種口罩袋數(shù)是第一次的2倍.甲種口罩按原售價出售,而乙種口罩讓利銷售.若兩種口罩銷售完畢,要使第二次銷售活動獲利不少于3680元,乙種口罩最低售價為每袋多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司試銷一種成本為30元/件的新產(chǎn)品,按規(guī)定試銷時的銷售單價不低于成本單價,又不高于80元/件,試銷中每天的銷售量y(件)與銷售單價x(元/件)滿足下表中的函數(shù)關(guān)系.

x(元/件)

35

40

45

50

55

y(件)

550

500

450

400

350


(1)試求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)公司試銷該產(chǎn)品每天獲得的毛利潤為S(元),求S與x之間的函數(shù)表達(dá)式(毛利潤=銷售總價﹣成本總價);
(3)當(dāng)銷售單價定為多少時,該公司試銷這種產(chǎn)品每天獲得的毛利潤最大?最大毛利潤是多少?此時每天的銷售量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組,并將它的解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD沿x軸負(fù)方向平移a個單位長度后,點(diǎn)C恰好落在雙曲線上,則a的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩張相同的矩形紙片ABCDA′B′C′D′,其中AB=3,BC=8.

(1)若將其中一張矩形紙片ABCD沿著BD折疊,點(diǎn)A落在點(diǎn)E處(如圖1),設(shè)DEBC相交于點(diǎn)F,求BF的長;

(2)若將這兩張矩形紙片交叉疊放(如圖2),判斷四邊形MNPQ的形狀,并證明.四邊形MNPQ的最大面積是_________.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一張長為8cm,寬為6cm的矩形紙片上,現(xiàn)要剪下一個腰長為5cm的等腰三角形(要求:等腰三角形的一個頂點(diǎn)與矩形的一個頂點(diǎn)重合,其余的兩個頂點(diǎn)在矩形的邊上).則剪下的等腰三角形的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AD平分∠BAC,ADBC,垂足為D,AN△ABC外角∠CAM的平分線,CEAN,垂足為E.

(1)求證:四邊形ADCE是矩形;

(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是正方形?給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形的長和寬分別是7cm3cm,分別繞著它的長和寬所在的直線旋轉(zhuǎn)一周,回答下列問題:

(1)如圖(1),繞著它的寬所在的直線旋轉(zhuǎn)一周,所得到的是什么樣的幾何體?得到的幾何體的體積是多少?(π3.14)

(2)如圖(2),繞著它的長所在的直線旋轉(zhuǎn)一周,所得到的是什么樣的幾何體?得到的幾何體的體積是多少?(π3.14)

查看答案和解析>>

同步練習(xí)冊答案