【題目】如圖,ABO的直徑,CO上一點(diǎn),點(diǎn)D 的中點(diǎn),DEO的切線,DFABF,點(diǎn)G 的中點(diǎn)

1)求證:△ADE≌△ADF;

2)若OF3,AB10,求圖中陰影部分的面積.

【答案】1)詳見解析;(2

【解析】

1)連接OD,證明DEBC,進(jìn)而得∠E=∠DFA=∠ACB90°,由D 的中點(diǎn)得∠DAE=∠DAF,再結(jié)合公共邊,由AAS定理得結(jié)論;

2)連接OD,OG,過(guò)OOHACH,過(guò)CCKOA于點(diǎn)K,由勾股定理求得 DF,便可得OH,再求AH,AK,再由相似三角形求得OM,最后求出扇形OAG,OGMACM的面積便可.

1)證明:連接OD,如圖1,

∵點(diǎn)D的中點(diǎn),

∴∠DAF=∠DAEODBC,

DE是⊙O的切線,

ODDE

DEBC,

AB是⊙O的直徑,

∴∠ACB90°,

∴∠AED=∠ACB90°,

ADAD,

∴:ADE≌△ADFAAS);

2)連接OD,OG,過(guò)OOHACH,過(guò)CCKOA于點(diǎn)K,如圖2,

AHCH,∠GOA=∠GOB90°,OAOBOD5,

OHDEDF ,

CHAH

BC ,

CK ,

AK

OKOAAK ,

OGCK

∴△OGM∽△KCM,

,

OM

AM5 ,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,⊙ORtABC的內(nèi)切圓,切點(diǎn)為D、EF.

1)求證:四邊形OECF是正方形;

2)若AF10,BE3,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸交于A(﹣1,0B30)兩點(diǎn),與y軸交于點(diǎn)C0,﹣3

1)求出該拋物線的函數(shù)關(guān)系式及對(duì)稱軸

2)點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為t 0t3).當(dāng)△PCB的面積的最大值時(shí),求點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:有一個(gè)內(nèi)角為90°,且對(duì)角線相等的四邊形稱為準(zhǔn)矩形.

(1)①如圖1,準(zhǔn)矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD=   

②如圖2,直角坐標(biāo)系中,A(0,3),B(5,0),若整點(diǎn)P使得四邊形AOBP是準(zhǔn)矩形,則點(diǎn)P的坐標(biāo)是   ;(整點(diǎn)指橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn))

(2)如圖3,正方形ABCD中,點(diǎn)E、F分別是邊AD、AB上的點(diǎn),且CF⊥BE,求證:四邊形BCEF是準(zhǔn)矩形;

(3)已知,準(zhǔn)矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當(dāng)△ADC為等腰三角形時(shí),請(qǐng)直接寫出這個(gè)準(zhǔn)矩形的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,身高都為1.6的小芳、小麗來(lái)到溪江公園,準(zhǔn)備用她們所學(xué)的知識(shí)測(cè)算南塔的高度.如圖,小芳站在A處測(cè)得她看塔頂?shù)难鼋?/span> 45,小麗站在B處(AB與塔的軸心共線)測(cè)得她看塔頂?shù)难鼋?/span> 30.她們又測(cè)出A、B兩點(diǎn)的距離為30.假設(shè)她們的眼睛離頭頂都為10 cm,則可計(jì)算出塔高約為結(jié)果精確到0.01,參考數(shù)據(jù):1.4141.732( ).

A36.21 B37.71 C40.98 D42.48

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過(guò)DDEAC,垂足為E

1)證明:DE為⊙O的切線;

2)連接OE,若BC=4,求OEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,ABCD,BCCD,AB2,CD3,在BC上取點(diǎn)PPBC不重合)連接PA延長(zhǎng)至E,使PA2AE,連接PD并延長(zhǎng)至F,使PD3FD,以PE、PF為邊作平行四邊形,另一個(gè)頂點(diǎn)為G,則PG長(zhǎng)度的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽(yáng)光線與水平面所成的角為,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽(yáng)光線與水平面所成的角為,女生樓在男生樓墻面上的影高為DA,已知

求樓間距AB

若男生樓共30層,層高均為3m,請(qǐng)通過(guò)計(jì)算說(shuō)明多少層以下會(huì)受到擋光的影響?參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有下列5個(gè)結(jié)論:①abc0;②4a+2b+c0;③b2-4ac0;④ba+c;⑤a+2b+c0,其中正確的結(jié)論有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

同步練習(xí)冊(cè)答案