【題目】如圖,在Rt△ABC中,∠ABC=90°,BA=BC.點D是AB的中點,連結CD,過點B作BG⊥CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連結DF.給出以下四個結論:①;②點F是GE的中點;③AF=AB;④S△ABC=5S△BDF,其中正確的結論序號是( )
A. 4個 B. 3個 C. 2個 D. 1個
【答案】C
【解析】
根據同角的余角相等求出∠ABG=∠BCD,然后利用“角邊角”證明△ABG和△BCD
全等,根據全等三角形對應邊相等可得AG=BD,然后求出,再求出△AFG和
△CFB相似,根據相似三角形對應邊成比例可得從而判斷出①正確;求出
,然后根據FE≠BE判斷出②錯誤;根據相似三角形對應邊成比例求出
再根據等腰直角三角形的性質可得然后整理即可得到判斷出
③正確;過點F作MF⊥AB于M,根據三角形的面積整理即可判斷出④錯誤.
∵∠ABC=90°,BG⊥CD,
∴∠ABG+∠CBG=90°,∠BCD+∠CBG=90°,
∴∠ABG=∠BCD,
在△ABC和△BCD中,
∴△ABG≌和△BCD(ASA),
∴AG=BD,
∵點D是AB的中點,
∴
∴
在Rt△ABC中,∠ABC=90°,
∴AB⊥BC,
∵AG⊥AB,
∴AG∥BC,
∴△AFG∽△CFB,
∴
∵BA=BC,
∴故①正確;
∵△AFG∽△CFB,
∴
∴
∵FE≠BE,
∴點F是GE的中點不成立,故②錯誤;
∵△AFG∽△CFB,
∴
∴
∵
∴故③正確;
過點F作MF⊥AB于M,則FM∥CB,
∴
∵
∴ 故④錯誤.
綜上所述,正確的結論有①③共2個.
故選:C.
科目:初中數學 來源: 題型:
【題目】某建設工地一個工程有大量的沙石需要運輸.建設公司車隊有載重量為8噸和10噸的卡車共12輛,全部車輛一次能運輸110噸沙石
(1)求建設公司車隊載重量為8噸和10噸的卡車各有多少輛?
(2)隨著工程的進展,車隊需要一次運輸沙石超過160噸,為了完成任務,準備新增購這兩種卡車共6輛,車隊最多新購買載重量為8噸的卡車多少輛?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點G為△ABC的重心(△ABC三條中線的交點),以點G為圓心作⊙G與邊AB,AC相切,與邊BC相交于點H,K,若AB=4,BC=6,則HK的長為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,O為坐標原點,直線y=﹣x+4交x軸于點C,交y軸于點A,過A、C兩點的拋物線y=ax2+bx+4交x軸負半軸于點B,且tan∠BAO=.
(1)求拋物線的解析式;
(2)已知E、F是線段AC上異于A、C的兩個點,且AE<AF,EF=2,D為拋物線上第一象限內一點,且DE=DF,設點D的橫坐標為m,△DEF的面積為S,求S與m的函數關系式(不要求寫出自變量m的取值范圍);
(3)在(2)的條件下,當∠EDF=90°時,連接BD,P為拋物線上一動點,過P作PQ⊥BD交線段BD于點Q,連接EQ.設點P的橫坐標為t,求t為何值時,PE=QE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,直線L:y=mx+n(m<0,n>0)與x,y軸分別相交于A,B兩點,將△AOB繞點O逆時針旋轉90°,得到△COD,過點A,B,D的拋物線P叫做L的關聯拋物線,而L叫做P的關聯直線.
(1)若L:y=-x+2,則P表示的函數解析式為______;若P:,則表示的函數解析式為_______.
(2)如圖②,若L:y=-3x+3,P的對稱軸與CD相交于點E,點F在L上,點Q在P的對稱軸上.當以點C,E,Q,F為頂點的四邊形是以CE為一邊的平行四邊形時,求點Q的坐標;
(3)如圖③,若L:y=mx+1,G為AB中點,H為CD中點,連接GH,M為GH中點,連接OM.若OM=,求出L,P表示的函數解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:四邊形為的內接四邊形,連接,為的直徑,于點.
(1)如圖,求證:;
(2)如圖,連接,當時,求證:;
(3)如圖,在(2)的條件下,延長交于點,連接, ,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在同一平面直角坐標系中,一次函數與反比例函數(為常數,且)的圖像交于、兩點,它們的部分圖像如圖所示,的面積是6.
(1)求一次函數與反比例函數的表達式;
(2)請直接寫出不等式的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與x軸,y軸分別交于A,B兩點,點為直線上一點,直線過點C.
求m和b的值;
直線與x軸交于點D,動點P從點D開始以每秒1個單位的速度向x軸負方向運動設點P的運動時間為t秒.
①若點P在線段DA上,且的面積為10,求t的值;
②是否存在t的值,使為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,一動點從半徑為2的上的點出發(fā),沿著射線方向運動到上的點處,再向左沿著與射線夾角為的方向運動到上的點處;接著又從點出發(fā),沿著射線方向運動到上的點處,再向左沿著與射線夾角為的方向運動到上的點處;間的距離是________;…按此規(guī)律運動到點處,則點與點間的距離是________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com