證明:兩條直線相交,只有一個交點.

答案:
解析:

設直線AB,CD相交于M.假設直線AB,CD另有一個交點N,這說明經(jīng)過M,N兩點有兩條直線AB和CD,這與公理經(jīng)過兩點有且只有一條直線矛盾.故假設不成立.所以AB,CD只有一個交點.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

我們所學的幾何知識可以理解為對“構圖”的研究:根據(jù)給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據(jù)問題構造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據(jù)所構造的圖形提出一個結論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是
ABC
的中點,弦DE精英家教網(wǎng)⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用反證法證明“垂直于同一直線的兩直線平行”第一步先假設(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

我們所學的幾何知識可以理解為對“構圖”的研究:根據(jù)給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據(jù)問題構造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據(jù)所構造的圖形提出一個結論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是數(shù)學公式的中點,弦DE⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:廣東省中考真題 題型:解答題

我們所學的幾何知識可以理解為對“構圖”的研究:根據(jù)給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據(jù)問題構造圖形),并加以研究。
例如:在平面上根據(jù)兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法)。
請你用上面的思想和方法對下面關于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D),請你根據(jù)所構造的圖形提出一個結論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點,弦DE⊥AB于點F,請找出點C和點E重合的條件,并說明理由。

查看答案和解析>>

同步練習冊答案