精英家教網 > 初中數學 > 題目詳情

【題目】為解決“最后一公里”的交通接駁問題,某市投放了大量公租自行車使用,到2014年底,全市已有公租自行車25000輛,租賃點600個,預計到2016年底,全市將有公租自行車50000輛,并且平均每個租賃點的公租自行車數量是2014年底平均每個租賃點的公租自行車數量的1.2倍,預計到2016年底,全市將有租賃點多少個?

【答案】解:設到2016年底,全市將有租賃點x個,根據題意可得: ×1.2= ,

解得:x=1000,

經檢驗得:x=1000是原方程的根,25000600 ×1.2= 50000

答:到2016年底,全市將有租賃點1000個


【解析】根據題意“2014年底平均每個租賃點的公租自行車數量的1.2倍”可列分式方程 即可求出.
【考點精析】本題主要考查了分式方程的應用的相關知識點,需要掌握列分式方程解應用題的步驟:審題、設未知數、找相等關系列方程、解方程并驗根、寫出答案(要有單位)才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】京廣高速鐵路工程指揮部,要對某路段工程進行招標,接到了甲、乙兩個工程隊的投標書.從投標書中得知:甲隊單獨完成這項工程所需天數是乙隊單獨完成這項工程所需天數的;若由甲隊先做10天,剩下的工程再由甲、乙兩隊合作30天完成.

(1)求甲、乙兩隊單獨完成這項工程各需多少天?

(2)已知甲隊每天的施工費用為8.4萬元,乙隊每天的施工費用為5.6萬元.工程預算的施工費用為500萬元.為縮短工期并高效完成工程,擬安排預算的施工費用是否夠用?若不夠用,需追加預算多少萬元?請給出你的判斷并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2016廣西南寧市)在南寧市地鐵1號線某段工程建設中,甲隊單獨完成這項工程需要150天,甲隊單獨施工30天后增加乙隊,兩隊又共同工作了15天,共完成總工程的

(1)求乙隊單獨完成這項工程需要多少天?

(2)為了加快工程進度,甲、乙兩隊各自提高工作效率,提高后乙隊的工作效率是,甲隊的工作效率是乙隊的m倍(1≤m≤2),若兩隊合作40天完成剩余的工程,請寫出a關于m的函數關系式,并求出乙隊的最大工作效率是原來的幾倍?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程解應用題:

老舍先生曾說“天堂是什么樣子,我不曉得,但從我的生活經驗去判斷,北平之秋便是天堂!保ㄕ浴蹲〉膲簟罚┙瘘S色的銀杏葉為北京的秋增色不少。

小宇家附近新修了一段公路,他想給市政寫信,建議在路的兩邊種上銀杏樹。他先讓爸爸開車駛過這段公路,發(fā)現速度為60千米/小時,走了約3分鐘,由此估算這段路長約_______千米。

然后小宇查閱資料,得知銀杏為落葉大喬木,成年銀杏樹樹冠直徑可達8米。小宇計劃從路的起點開始,每a米種一棵樹,繪制示意圖如下:

考慮到投入資金的限制,他設計了另一種方案,將原計劃的a擴大一倍,則路的兩側共計減少200棵樹,請你求出a的值。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題情境:如圖,在中,于點D.可知:不需要證明;

特例探究:如圖,,射線AE在這個角的內部,點B、C的邊AM、AN上,且于點F,于點證明:;

歸納證明:如圖,點BC的邊AM、AN上,點EF內部的射線AD上,、分別是、的外角已知,求證:;

拓展應用:如圖,在中,D在邊BC上,,點EF在線段AD上,的面積為24,則的面積之和為______直接寫出結果

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀材料后完成.

有這樣一個游戲,游戲規(guī)則如下所述:如圖①—,都是邊 長為網格圖,其中每條實線稱為格線,格線與格線的交 點稱為格點.在圖和圖中,可知.在圖和圖中,可知 根據上面的游戲規(guī)則,同學們開始闖關吧! 第一關:在圖網格圖中,所給各點均為格點,經過 給定的一點(不包括邊框上的點),在圖中畫出一條與線段垂直 的線段(或者直線),再畫出與線段平行的一條線段(或者 直線) 第二關:在圖網格圖中,所給各點均為格點,經過 兩對給定的點,構造兩條互相垂直的直線.(在圖中直接畫出)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知兩點A30),B0,4),點C在第一象限,ABBC,BC=BA,點P在線段OB上,OP=OA,AP的延長線與CB的延長線交于點M,ABCP交于點N

1)點C的坐標為:    ;

2)求證:BM=BN

3)設點C關于直線AB的對稱點為D,點C關于直線AP的對稱點為G,求證:D,G關于x軸對稱.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在任意四邊形ABCD中,M,NP,Q分別是ABBC,CDDA上的點,對于四邊形MNPQ的形狀,以下結論中,錯誤的是  

A. M,NP,Q是各邊中點,四邊MNPQ一定為平行四邊形

B. M,N,PQ是各邊中點,且時,四邊形MNPQ為正方形

C. M,N、P,Q是各邊中點,且時,四邊形MNPQ為菱形

D. M,N、PQ是各邊中點,且時,四邊形MNPQ為矩形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面的推理過程,在括號內填上推理的依據,如圖:

∵∠1+2=180°,∠2+4=180°(已知)

∴∠1=4( )

ca( )

又∵∠2+3=180°(已知 )

3=6( )

∴∠2+6=180°( )

ab( )

cb( )

查看答案和解析>>

同步練習冊答案