如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C分別在x軸、y軸上,四邊形ABCO為矩形,AB=16,點(diǎn)D與點(diǎn)A關(guān)于y軸對(duì)稱(chēng),,點(diǎn)E、F分別是線段AD、AC上的動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)A、D重合),且∠CEF=∠ACB.
(1)求AC的長(zhǎng)和點(diǎn)D的坐標(biāo);
(2)說(shuō)明△AEF與△DCE相似;
(3)當(dāng)△EFC為等腰三角形時(shí),求點(diǎn)E的坐標(biāo).
(1)AC=20. D(12,0)
(2)見(jiàn)解析
(3)E的坐標(biāo)為或.
解析試題分析:(1)利用矩形的性質(zhì),在Rt△ABC中,利用三角函數(shù)求出AC、BC的長(zhǎng)度,從而得到A點(diǎn)坐標(biāo);由點(diǎn)D與點(diǎn)A關(guān)于y軸對(duì)稱(chēng),進(jìn)而得到D點(diǎn)的坐標(biāo);
(2)欲證△AEF與△DCE相似,只需要證明兩個(gè)對(duì)應(yīng)角相等即可.如圖①,在△AEF與△DCE中,易知∠CDE=∠CAO,∠AEF=∠DCE,從而問(wèn)題解決;
(3)當(dāng)△EFC為等腰三角形時(shí),有三種情況,需要分類(lèi)討論:
①當(dāng)CE=EF時(shí),此時(shí)△AEF與△DCE相似比為1,則有AE=CD;
②當(dāng)EF=FC時(shí),此時(shí)△AEF與△DCE相似比為,則有AE=CD;
③當(dāng)CE=CF時(shí),F(xiàn)點(diǎn)與A點(diǎn)重合,這與已知條件矛盾,故此種情況不存在.
考點(diǎn):相似三角形的判定與性質(zhì);坐標(biāo)與圖形性質(zhì);等腰三角形的性質(zhì);矩形的性質(zhì);解直角三角形.
點(diǎn)評(píng):本題的難點(diǎn)在于第(3)問(wèn),當(dāng)△EFC為等腰三角形時(shí),有三種情況,需要分類(lèi)討論,注意不要漏解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com