【題目】如圖,AB兩點在反比例函數(shù)yx0)的圖象上,其中k0,ACy軸于點C,BDx軸于點D,且AC1

1)若k2,則AO的長為   ,△BOD的面積為   

2)若點B的橫坐標為k,且k1,當AOAB時,求k的值.

【答案】(1);1.(2)k2+

【解析】

1)由ACk的值可得出點A的坐標,利用勾股定理即可求出OA的長度,由點B在反比例函數(shù)圖象上,利用反比例函數(shù)系數(shù)k的幾何意義即可得出BOD的面積;
2)根據(jù)反比例函數(shù)圖象上點的坐標特征可找出點A、B的坐標,利用兩點間的距離公式即可求出ABAO的長度,由AO=AB即可得出關(guān)于k的方程,解之即可求出k值,再根據(jù)k1即可確定k值.

解:(1)∵AC1k2,

∴點A1,2),

OC2OA

∵點B在反比例函數(shù)yx0)的圖象上,

SBOD|k|1

故答案為:;1

2)∵AB兩點在函數(shù)yx0)的圖象上,

A1,k),Bk,1),

AO,AB

AOAB

,

解得:k2+k2

k1,

k2+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標原點,點A(1,5)和點B(m,1)均在反比例函數(shù)y=圖象上.

(1)求m,k的值;

(2)設(shè)直線AB與x軸交于點C,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜生產(chǎn)基地用裝有恒溫系統(tǒng)的大棚栽培一種適宜生長溫度為1520℃的新品種,如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚里溫度y)隨時間xh)變化的函數(shù)圖象,其中AB段是恒溫階段,BC段是雙曲線y=的一部分,請根據(jù)圖中信息解答下列問題:

1)求02小時期間yx的函數(shù)解析式;

2)恒溫系統(tǒng)在一天內(nèi)保持大棚內(nèi)溫度不低于15℃的時間有多少小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)y=x22mx3,有下列結(jié)論:

①它的圖象與x軸有兩個交點;

②如果當x≤1時,yx的增大而減小,則m=1;

③如果將它的圖象向左平移3個單位后過原點,則m=1;

④如果當x=2時的函數(shù)值與x=8時的函數(shù)值相等,則m=5.

其中一定正確的結(jié)論是_______.(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且ODE的面積是12,則k=( 。

A. 6 B. 9 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)ya0,a為常數(shù))和y在第一象限內(nèi)的圖象如圖所示,點My的圖象上,MCx軸于點C,交y的圖象于點A;MDy軸于點D,交y的圖象于點B,當點My的圖象上運動時,以下結(jié)論:①SODBSOCA;②四邊形OAMB的面積不變;③當點AMC的中點時,則點BMD的中點.其中正確結(jié)論是(  )

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰梯形ABCD放置在平面坐標系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函數(shù)的圖象經(jīng)過點C.

(1)求點C的坐標和反比例函數(shù)的解析式;

(2)將等腰梯形ABCD向上平移2個單位后,問點B是否落在雙曲線上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是AB、CD的中點,EGAFFHCE,垂足分別為GH,設(shè)AG=x,圖中陰影部分面積為y,則yx之間的函數(shù)關(guān)系式是( 。

A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課外實踐活動中,要測量教學(xué)樓的高度AM.下面是兩位同學(xué)的對話:請你根據(jù)兩位同學(xué)的對話,結(jié)合圖形計算教學(xué)樓的高度AM.(參考數(shù)據(jù):sin20°≈,cos20°≈,tan20°≈

查看答案和解析>>

同步練習(xí)冊答案