如圖,在等腰Rt△ABC中斜邊BC=9,從中裁剪內(nèi)接正方形DEFG,其中DE在斜邊BC上,點(diǎn)F、G分別在直角邊AC、AB上,按照同樣的方式在余下的三角形中繼續(xù)裁剪,如此操作下去,共可裁剪出邊長(zhǎng)大于1的正方形個(gè)


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    5
B
試題分析:在等腰Rt△ABC中斜邊BC=9,從中裁剪內(nèi)接正方形DEFG;三角形BDG和CEF都是等腰直角三角形;BD="DE=EC=1/3" *BC=3;同理在三角形BDG和CEF中可分別裁出邊長(zhǎng)大于1的正方形來(lái)
考點(diǎn):三角形和正方形
點(diǎn)評(píng):本題考查三角形和正方形的知識(shí),運(yùn)用三角形和正方形的性質(zhì)是解決本題的關(guān)鍵
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D,E分別在AC,BC邊上運(yùn)動(dòng),且保持AD=CE.連接DE,DF,EF.在此運(yùn)動(dòng)變化的過(guò)程中,下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形,
③DE長(zhǎng)度的最小值為4;
④四邊形CDFE的面積保持不變;
⑤△CDE面積的最大值為8.
其中正確的結(jié)論是( 。
A、①②③B、①④⑤C、①③④D、③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊精英家教網(wǎng)上運(yùn)動(dòng),且保持AD=CE.連接DE、DF、EF.
①求證:△DFE是等腰直角三角形;
②在此運(yùn)動(dòng)變化的過(guò)程中,四邊形CDFE的面積是否保持不變?試說(shuō)明理由.
③求△CDE面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,則
ADDC
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠ACB=90°,CA=CB,點(diǎn)M、N是AB上任意兩點(diǎn),且∠MCN=45°,點(diǎn)T為AB的中點(diǎn).以下結(jié)論:①AB=
2
AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正確結(jié)論的序號(hào)是( 。
A、①②③④B、只有①②③
C、只有①③④D、只有②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,AC=8
2
,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且保持AD=CE.連接DE、DF、EF.
(1)在此運(yùn)動(dòng)變化的過(guò)程中,△DFE是
等腰直角
等腰直角
三角形;
(2)若AD=
2
,求△DFE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案