如圖,拋物線y=ax2+bx+c的交x軸于點(diǎn)A和點(diǎn)B(-2,0),與y軸的負(fù)半軸交于點(diǎn)C,且線段OC的長(zhǎng)度是線段OA的2倍,拋物線的對(duì)稱軸是直線x=1.
(1)求拋物線的解析式;
(2)若過(guò)點(diǎn)(0,-5)且平行于x軸的直線與該拋物線交于M、N兩點(diǎn),以線段MN為一邊拋物線上與M、N不重合的任意一點(diǎn)P(x,y)為頂點(diǎn)作平行四邊形,若平行四邊形的面積為S,請(qǐng)你求出S關(guān)于點(diǎn)P的縱坐標(biāo)y的函數(shù)解析式;
(3)當(dāng)0<x≤
10
3
時(shí),(2)中的平行四邊形的面積是否存在最大值?若存在,請(qǐng)求出來(lái);若不存在,請(qǐng)說(shuō)明理由.
(1)∵拋物線的對(duì)稱軸x=1,B(-2,0)
∴A(4,0),OA=4
∴OC=2OA=8,即C點(diǎn)坐標(biāo)為(0,-8)
設(shè)拋物線的解析式為y=a(x+2)(x-4)
由于拋物線過(guò)C點(diǎn),
則有a(0+2)(0-4)=-8,
即a=1
因此拋物線的解析式為y=(x+2)(x-4)=x2-2x-8;

(2)當(dāng)y=-5時(shí),x2-2x-8=-5,
解得x=3,x=-1
∴M、N的坐標(biāo)分別為(3,-5),(-1,-5)
∴MN=4
∴S=4|y+5|;

(3)由于0<x≤
10
3
,此時(shí)y<0,且P與M、N不重合,因此可分兩種情況進(jìn)行討論:
①當(dāng)0<x<3時(shí),
S=4(-5-y)=4(-5-x2+2x+8)=4(-x2+2x-1+4)=-4(x-1)2+16,
Smax=16;
②當(dāng)3<x≤
10
3
時(shí),
S=4(5+y)=4(x2-2x-3)=4(x-1)2-16,
由于拋物線開(kāi)口向上,且對(duì)稱軸為x=-1,
因此當(dāng)x=
10
3
時(shí),Smax=
52
9

因此存在平行四邊形的最大值,且最大值為16.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)A1、A2、A3、…、An在拋物線y=x2圖象點(diǎn)B1、B2、B3、…、Bn在y軸上,若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都為等腰直角三角形(點(diǎn)B0是坐標(biāo)原點(diǎn)),則△A2012B2011B2012的腰長(zhǎng)=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直角梯形ABCD的頂點(diǎn)A、B、C的坐標(biāo)分別為(
1
2
,0)、(2,0)和(2,3),ABCD,∠C=90°,CD=CB.
(1)求點(diǎn)D的坐標(biāo);
(2)拋物線y=ax2+bx+c過(guò)原點(diǎn)O與點(diǎn)(7,1),且對(duì)稱軸為過(guò)點(diǎn)(4,3)與y軸平行的直線,求拋物線的函數(shù)關(guān)系式;
(3)在(2)中的拋物線上是否存在一點(diǎn)P,使得PA+PB+PC+PD最小?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知直線y=-
1
2
x+1交坐標(biāo)軸于A,B兩點(diǎn),以線段AB為邊向上作正方形ABCD,過(guò)點(diǎn)A,D,C的拋物線與直線的另一個(gè)交點(diǎn)為E.
(1)直接寫(xiě)出點(diǎn)C和點(diǎn)D的坐標(biāo),C(______)、D(______);
(2)求出過(guò)A,D,C三點(diǎn)的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線y=kx+b,與拋物線y=ax2交于A(1,m),B(-2,4)+y軸交與點(diǎn)C.
(1)求拋物線的解析式;
(2)求S△AOB;
(3)求
BC
AC
的值;
(4)判斷點(diǎn)A是否在以BO為直徑的圓上?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=2
3
,直線y=
3
x-2
3
經(jīng)過(guò)點(diǎn)C,交y軸于點(diǎn)G.
(1)點(diǎn)C、D的坐標(biāo)分別是C______,D______;
(2)求頂點(diǎn)在直線y=
3
x-2
3
上且經(jīng)過(guò)點(diǎn)C、D的拋物線的解析式;
(3)將(2)中的拋物線沿直線y=
3
x-2
3
平移,平移后的拋物線交y軸于點(diǎn)F,頂點(diǎn)為點(diǎn)E(頂點(diǎn)在y軸右側(cè)).平移后是否存在這樣的拋物線,使△EFG為等腰三角形?若存在,請(qǐng)求出此時(shí)拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(7,0),點(diǎn)B的坐標(biāo)為(3,4),
(1)求經(jīng)過(guò)O、A、B三點(diǎn)的拋物線解析式;
(2)將線段AB繞A點(diǎn)順時(shí)針旋轉(zhuǎn)75°至AC,直接寫(xiě)出點(diǎn)C的坐標(biāo);
(3)在y軸上找一點(diǎn)P,第一象限找一點(diǎn)Q,使得以O(shè)、B、Q、P為頂點(diǎn)的四邊形是菱形,求出點(diǎn)Q的坐標(biāo);
(4)△OAB的邊OB上有一動(dòng)點(diǎn)M,過(guò)M作MNOA交AB于N,將△BMN沿MN翻折得△DMN.設(shè)MN=x,△DMN與△OAB重疊部分的面積為y,求出y與x之間的函數(shù)關(guān)系式,并求出重疊部分面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)A(1,0)和B(3,0),點(diǎn)C(m,
15
)在拋物線的對(duì)稱軸上.
(1)求拋物線的函數(shù)表達(dá)式.
(2)求證:△ABC是等腰三角形.
(3)動(dòng)點(diǎn)P在線段AC上,從點(diǎn)A出發(fā)以每鈔1個(gè)單位的速度向C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在線段AB上,從B出發(fā)以每秒1個(gè)單位的速度向A運(yùn)動(dòng).當(dāng)Q到達(dá)點(diǎn)A時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,求當(dāng)t為何值時(shí),△APQ與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某跑道的周長(zhǎng)為400m且兩端為半圓形,要使矩形內(nèi)部操場(chǎng)的面積最大,直線跑道的長(zhǎng)應(yīng)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案