【題目】如圖,已知l1l2,MN分別和直線l1、l2交于點(diǎn)A、B,ME分別和直線l1、l2交于點(diǎn)C、D,點(diǎn)PMN上(P點(diǎn)與A、B、M三點(diǎn)不重合).

(1)如果點(diǎn)PA、B兩點(diǎn)之間運(yùn)動時(shí),∠α、β、γ之間有何數(shù)量關(guān)系請說明理由;

(2)如果點(diǎn)PA、B兩點(diǎn)外側(cè)運(yùn)動時(shí),∠α、β、γ有何數(shù)量關(guān)系(只須寫出結(jié)論).

【答案】(1)α+β=γ.(2)①PA點(diǎn)左邊時(shí),∠α﹣∠β=∠γ;②PB點(diǎn)右邊時(shí),∠β﹣∠α=∠γ.

【解析】分析:(1)根據(jù)平行線的性質(zhì)可求出它們的關(guān)系,從點(diǎn)P作平行線,平行于AC,根據(jù)兩直線平行內(nèi)錯(cuò)角相等可得出.
(2)分類討論,①點(diǎn)P在點(diǎn)A左邊,②點(diǎn)P在點(diǎn)B右邊.

詳解:(1)如圖,過點(diǎn)PAC的平行線PO,

ACPO

∴∠β=CPO,

又∵ACBD,

POBD

∴∠α=DPO,

∴∠α+β=γ.

(2)PA點(diǎn)左邊時(shí),∠αβ=γ

PB點(diǎn)右邊時(shí),∠βα=γ.

(提示:兩小題都過PAC的平行線).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校學(xué)生進(jìn)行課外閱讀的情況,從全校2200名學(xué)生中隨機(jī)抽取了100名學(xué)生,對他們平均每天進(jìn)行課外閱讀的時(shí)長進(jìn)行統(tǒng)計(jì),樣本容量是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點(diǎn)CD,在直線l3上有點(diǎn)P(點(diǎn)P與點(diǎn)C、D不重合),點(diǎn)A在直線l1上,點(diǎn)B在直線l2上。

(1)如果點(diǎn)PC、D之間運(yùn)動時(shí),試說明∠1+∠3=∠2;

(2)如果點(diǎn)P在直線l1的上方運(yùn)動時(shí),試探索∠1,∠2,∠3之間的關(guān)系又是如何?

(3)如果點(diǎn)P在直線l2的下方運(yùn)動時(shí),試探索∠PAC,∠PBD,∠APB之間的關(guān)系又是如何? (直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)(5,﹣3)所在的象限是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某港口位于東西方向的海岸線上.“遠(yuǎn)航”號、“海天”號輪船同時(shí)離開港口,各自沿一固定方向航行,“遠(yuǎn)航”號每小時(shí)航行16海里,“海天”號每小時(shí)航行12海里.它們離開港口 小時(shí)后相距30海里.如果知道“遠(yuǎn)航”號沿東北方向航行,能知道“海天”號沿哪個(gè)方向航行嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)正數(shù)的平方根是2a+1和﹣a+2,則a_____,這個(gè)正數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB10,AC2,BC邊上的高AD6,則另一邊BC等于_______

【答案】106

【解析】試題解析:根據(jù)題意畫出圖形,如圖所示,

如圖1所示,AB=10,AC=2,AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時(shí)BC=BD+CD=8+2=10;

如圖2所示,AB=10,AC=2AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時(shí)BC=BD-CD=8-2=6,

BC的長為6或10.

型】填空
結(jié)束】
12

【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過P1(x1,y1)、P2(x2,y2)兩點(diǎn),若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB=90°,AC=BC=4,點(diǎn)DAB的中點(diǎn),M,N分別在BC,AC上,且BM=CN現(xiàn)有以下四個(gè)結(jié)論:

DN=DM; NDM=90°; 四邊形CMDN的面積為4; ④△CMN的面積最大為2.

其中正確的結(jié)論有(

A. ①②④ B. ①②③; C. ②③④; D. ①②③④.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副三角板按如圖所示疊放在一起,若固定,繞著公共頂點(diǎn),按順時(shí)針方向旋轉(zhuǎn),當(dāng)的一邊與的某一邊平行時(shí),相應(yīng)的旋轉(zhuǎn)角的度數(shù)為_________________

查看答案和解析>>

同步練習(xí)冊答案