有三個(gè)多項(xiàng)式:
1
2
x2+x-1,
1
2
x2+3x+1,
1
2
x2-x
,請(qǐng)你選擇其中的兩個(gè)進(jìn)行加法運(yùn)算,并求出其當(dāng)x=-2時(shí)的值.
分析:此題是多項(xiàng)式的加法運(yùn)算,實(shí)質(zhì)上就是合并同類項(xiàng).本題答案不唯一,只要符合題意即可.注意需要要先去括號(hào)再合并同類項(xiàng),對(duì)所求代數(shù)式進(jìn)行化簡,然后把x的值代入求解.
解答:解:選擇
1
2
x2+x-1
1
2
x2-x
,
1
2
x2+x-1
)+(
1
2
x2-x

=
1
2
x2+x-1
+
1
2
x2-x

=x2-1.
當(dāng)x=-2時(shí),
原式=x2-1
=(-2)2-1
=4-1=3.
點(diǎn)評(píng):整式的加減運(yùn)算實(shí)際上就是去括號(hào)、合并同類項(xiàng),這是各地中考的?键c(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)分解下列因式,將結(jié)果直接寫在橫線上:
x2-6x+9=
(x-3)2
(x-3)2
,25x2+10x+1=
(5x+1)2
(5x+1)2
,4x2+12x+9=
(2x+3)2
(2x+3)2

(2)觀察上述三個(gè)多項(xiàng)式的系數(shù),有(-6)2=4×1×9,102=4×25×1,122=4×4×9,于是小明猜測:若多項(xiàng)式ax2+bx+c(a>0)是完全平方式,那么系數(shù)a、b、c之間一定存在某種關(guān)系.請(qǐng)你用數(shù)學(xué)式子表示小明的猜想.
b2=4ac
b2=4ac
(說明:如果你沒能猜出結(jié)果,就請(qǐng)你再寫出一個(gè)與(1)中不同的完全平方式,并寫出這個(gè)式中個(gè)系數(shù)之間的關(guān)系.)
(3)若多項(xiàng)式x2+ax+c和x2+cx+a都是完全平方式,利用(2)中的規(guī)律求ac的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)分解下列因式,將結(jié)果直接寫在橫線上:
x2-6x+9=______,25x2+10x+1=______,4x2+12x+9=______.
(2)觀察上述三個(gè)多項(xiàng)式的系數(shù),有(-6)2=4×1×9,102=4×25×1,122=4×4×9,于是小明猜測:若多項(xiàng)式ax2+bx+c(a>0)是完全平方式,那么系數(shù)a、b、c之間一定存在某種關(guān)系.請(qǐng)你用數(shù)學(xué)式子表示小明的猜想.______(說明:如果你沒能猜出結(jié)果,就請(qǐng)你再寫出一個(gè)與(1)中不同的完全平方式,并寫出這個(gè)式中個(gè)系數(shù)之間的關(guān)系.)
(3)若多項(xiàng)式x2+ax+c和x2+cx+a都是完全平方式,利用(2)中的規(guī)律求ac的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)分解下列因式,將結(jié)果直接寫在橫線上:
x2-6x+9=______,25x2+10x+1=______,4x2+12x+9=______.
(2)觀察上述三個(gè)多項(xiàng)式的系數(shù),有(-6)2=4×1×9,102=4×25×1,122=4×4×9,于是小明猜測:若多項(xiàng)式ax2+bx+c(a>0)是完全平方式,那么系數(shù)a、b、c之間一定存在某種關(guān)系.請(qǐng)你用數(shù)學(xué)式子表示小明的猜想.______(說明:如果你沒能猜出結(jié)果,就請(qǐng)你再寫出一個(gè)與(1)中不同的完全平方式,并寫出這個(gè)式中個(gè)系數(shù)之間的關(guān)系.)
(3)若多項(xiàng)式x2+ax+c和x2+cx+a都是完全平方式,利用(2)中的規(guī)律求ac的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案