(8分)如圖,在△ABC中,AB=AC,點(diǎn)O為底邊上的中點(diǎn),以點(diǎn)O為圓心,1為半徑的半圓與邊AB相切于點(diǎn)D.
1.(1)判斷直線AC與⊙O的位置關(guān)系,并說明理由;
2.(2)當(dāng)∠A=60°時(shí),求圖中陰影部分的面積.
1.解:(1)直線AC與⊙O相切.···················································································· 1分
理由是:
連接OD,過點(diǎn)O作OE⊥AC,垂足為點(diǎn)E.
∵⊙O與邊AB相切于點(diǎn)D,
∴OD⊥AB.·················································································································· 2分
∵AB=AC,點(diǎn)O為底邊上的中點(diǎn),
∴AO平分∠BAC············································································································· 3分
又∵OD⊥AB,OE⊥AC
∴OD= OE······················································································································· 4分
∴OE是⊙O的半徑.
又∵OE⊥AC,∴直線AC與⊙O相切.··········································································· 5分
2.(2)∵AO平分∠BAC,且∠BAC=60°,∴∠OAD=∠OAE=30°,
∴∠AOD=∠AOE=60°,
在Rt△OAD中,∵tan∠OAD = ,∴AD==,同理可得AE=
∴S四邊形ADOE =×OD×AD×2=×1××2=························································· 6分
又∵S扇形形ODE==π·························································································· 7分
∴S陰影= S四邊形ADOE -S扇形形ODE=-π.······································································· 8分
解析:略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com