解方程:(x-1)2=(3+2x)2
解:(x-1)2=(3+2x)2
移項,得(x-1)2-(3+2x)2=0,
所以[(x-1)+(3+2x)][(x-1)-(3+2x)]=0,
則x-1+3+2x=0,x-1-(3+2x)=0.
解得x1=    ,x2=   
感悟:運用平方差a代表什么式子,b代表什么式子?你認準了嗎?這里a=x-1,b=3+2x.
【答案】分析:本題可對方程進行移項,然后運用平方差公式將方程一邊化為兩式相乘的形式,再根據(jù)“兩式相乘值為0,這兩式中至少有一式值為0”來解題.
解答:解:依題意得:x-1+3+2x=0,x-1-(3+2x)=0,
即3x+2=0或-x-4=0,
解得x1=,x2=-4.
點評:運用a2-b2=(a+b)(a-b),可把二次方程轉(zhuǎn)化為一元一次方程,注意這里a代表的是什么,b代表什么,不能弄錯了.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

17、解方程x2-|x|-2=0,
解:1.當x≥0時,原方程化為x2-x-2=0,解得:x1=2,x2=-1[不合題意,舍去].
2.當x<o時,原方程化為:x2+x-2=0,解得:x1=1,(不合題意,舍去)x2=-2.所以原方程的根為:x1=2,x2=-2
請參照例題解方程:x2-|x-1|-1=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)解方程:4(x-1)=1-x
(2)解方程:
x+1
2
-
2-3x
3
=1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解方程:
x-
x-1
2
=
2
3
-
x+2
3

解:去分母,得6x-3x+1=4-2x+4…①
即-3x+1=-2x+8…②
移項,得-3x+2x=8-1…③
合并同類項,得-x=7…④
∴x=-7…⑤
上述解方程的過程中,是否有錯誤?答:
 
;如果有錯誤,則錯在
 
步.如果上述解方程有錯誤,請你給出正確的解題過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算與解方程:
(1)
3-x
2x-4
÷(x+2-
5
x-2
)

(2)
x
x-y
y2
x+y
-
x4y
x4-y4
÷
x2
x2+y2
;
(3)
5
2x+3
=
3
x-1
;
(4)
x
x+2
-
x+2
x-2
=
8
x2-4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算下列各題:
(1)先化簡再求值:
x2+x
x
÷(x+1)+
x2-x-2
x-2
,(其中x=-3).
(2)解方程
1
x+1
+
2
x-1
=
4
x2-1

查看答案和解析>>

同步練習冊答案