【題目】先化簡(jiǎn),再求值: 4xy(2x25xyy2)2(x23xy),其中(x2)2|y1|0,

【答案】y25xy,-9.

【解析】

首先去括號(hào)合并同類項(xiàng),再得出x,y的值代入即可.

解:原式=4xy2x25xyy22x26xy

y25xy

(x2)2|y1|0,

x20 y10,

解得x=-2,y1,

當(dāng)x=-2,y1時(shí),

原式=110

=-9.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.

(1)請(qǐng)直接寫出線段AF,AE的數(shù)量關(guān)系;

(2)①將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),如圖②,連接AE,請(qǐng)判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;

②若AB=2,CE=2,在圖②的基礎(chǔ)上將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn)一周的過程中,當(dāng)平行四邊形ABFD為菱形時(shí),直接寫出線段AE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】4x=2x+3,則x=_____;若(a3x-12=a5xa2,則x=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+cx軸交于AB兩點(diǎn),與y軸交于點(diǎn)CO是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(﹣10),點(diǎn)C的坐標(biāo)是(0,﹣3).

1)求拋物線的函數(shù)表達(dá)式;

2)求直線BC的函數(shù)表達(dá)式和∠ABC的度數(shù);

3P為線段BC上一點(diǎn),連接ACAP,若∠ACB=∠PAB,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)在正方形ABCD中,對(duì)角線AC,BD于點(diǎn)O,點(diǎn)P在線段BC上(不含點(diǎn)B),∠BPE=∠ACBPEBO于點(diǎn)E,過點(diǎn)BBF⊥PE,垂足為F,交AC于點(diǎn)G

1)當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)(如圖1).求證:△BOG≌△POE;

2)結(jié)合圖2,通過觀察、測(cè)量、猜想:=______,并證明你的猜想;

3)把正方形ABCD改為菱形,其他條件不變(如圖3),若AC=8,BD=6,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△A'B'C'是△ABC平移后得到的,△ABC中任一點(diǎn)P(x1,y1)平移后的對(duì)應(yīng)點(diǎn)為P'(x1+6,y1+4)

(1)請(qǐng)寫出△ABC平移的過程;
(2)分別寫出點(diǎn)A',B',C'的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(-2,3-π)所在象限是( 。

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的標(biāo)價(jià)為200元,8折銷售仍賺40元,則商品進(jìn)價(jià)為( )元。
A.140
B.120
C.160
D.100

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),按A→B→C的方向在AB和BC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是

A. A B. B C. C D. D

查看答案和解析>>

同步練習(xí)冊(cè)答案