【題目】某中學(xué)學(xué)生為了解該校學(xué)生喜歡球類活動的情況,隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查(要求每位學(xué)生只能填寫一種自己喜歡的球類),并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計(jì)圖.
請根據(jù)圖中提供的信息,解答下面的問題:
(1)參加調(diào)查的學(xué)生共有人,在扇形圖中,表示“其他球類”的扇形的圓心角為度;
(2)將條形圖補(bǔ)充完整;
(3)若該校有2000名學(xué)生,則估計(jì)喜歡“籃球”的學(xué)生共有人.
【答案】
(1)300;36
(2)解:喜歡足球的學(xué)生人數(shù)為:300﹣120﹣60﹣30=90(人),條形圖如圖
(3)800
【解析】解:(1)參加調(diào)查的學(xué)生共有60÷20%=300(人), 表示“其他球類”的扇形的圓心角為:360× =36°
所以答案是:300,36;(3)喜歡“籃球”的學(xué)生共有:
2000× =800(人)
所以答案是:800.
【考點(diǎn)精析】本題主要考查了扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖的相關(guān)知識點(diǎn),需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,以AB上一點(diǎn)O為圓心,OA長為半徑的圓與BC相切于點(diǎn)D,分別交AC、AB于點(diǎn)E、F.
(1)若AC=6,AB=10,求⊙O的半徑;
(2)連接OE、ED、DF、EF.若四邊形BDEF是平行四邊形,試判斷四邊形OFDE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具商店共有單價(jià)分別為10元、15元和20元的3種文具盒出售,該商店統(tǒng)計(jì)了2011年3月份這3種文具盒的銷售情況,并繪制統(tǒng)計(jì)圖如下:
(1)請?jiān)趫D②中把條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)小亮認(rèn)為:該商店3月份這3種文具盒總的平均銷售價(jià)格為 (元),你認(rèn)為小亮的計(jì)算方法正確嗎?如不正確,請計(jì)算出總的平均銷售價(jià)格.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一點(diǎn) (不與點(diǎn)A、B重合),連接CO并延長CO交⊙O于點(diǎn)D,連接AD.
(1)弦長AB等于(結(jié)果保留根號);
(2)當(dāng)∠D=20°時(shí),求∠BOD的度數(shù);
(3)當(dāng)AC的長度為多少時(shí),以A、C、D為頂點(diǎn)的三角形與以B、C、0為頂點(diǎn)的三角形相似?請寫出解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,O為正方形ABCD的中心,分別延長OA、OD到點(diǎn)F、E,使OF=2OA,OE=2OD,連接EF.將△EOF繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角得到△E1OF1(如圖2).
(1)探究AE1與BF1的數(shù)量關(guān)系,并給予證明;
(2)當(dāng)α=30°時(shí),求證:△AOE1為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題情境】 已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時(shí),它的周長最?最小值是多少?
【數(shù)學(xué)模型】
設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)關(guān)系式為y=2(x+ )(x>0).
【探索研究】
(1)我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=x+ (x>0)的圖象和性質(zhì). ①填寫下表,畫出函數(shù)的圖象;
x | … | 1 | 2 | 3 | 4 | … | |||
y | … | … |
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r(shí),除了通過觀察圖象,還可以通過配方得到.請你通過配方求函數(shù)y=x+ (x>0)的最小值.
(2)用上述方法解決“問題情境”中的問題,直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,點(diǎn)D為AB中點(diǎn),且OD⊥AB,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC為______ °
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校田園科技社團(tuán)計(jì)劃購進(jìn)A、B兩種花卉,兩次購買每種花卉的數(shù)量以及每次的總費(fèi)用如下表所示:
花卉數(shù)量(單位:株) | 總費(fèi)用(單位:元) | ||
A | B | ||
第一次購買 | 10 | 25 | 225 |
第二次購買 | 20 | 15 | 275 |
(1)你從表格中獲取了什么信息?(請用自己的語言描述,寫出一條即可);
(2)A、B兩種花卉每株的價(jià)格各是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(m,4),B(﹣4,n)在反比例函數(shù)y= (k>0)的圖象上,經(jīng)過點(diǎn)A、B的直線與x軸相交于點(diǎn)C,與y軸相交于點(diǎn)D.
(1)若m=2,求n的值;
(2)求m+n的值;
(3)連接OA、OB,若tan∠AOD+tan∠BOC=1,求直線AB的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com