【題目】甲、乙兩人在5次打靶測試中命中的環(huán)數如下: 甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填寫下表:
平均數 | 眾數 | 中位數 | 方差 | |
甲 | 8 | 8 | 0.4 | |
乙 | 9 | 3.2 |
(2)教練根據這5次成績,選擇甲參加射擊比賽,教練的理由是什么?
(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差 . (填“變大”、“變小”或“不變”).
科目:初中數學 來源: 題型:
【題目】如圖,為了測量某建筑物MN的高度,在平地上A處測得建筑物頂端M的仰角為30°,向N點方向前進16m到達B處,在B處測得建筑物頂端M的仰角為45°,則建筑物MN的高度等于( )
A.8( )m
B.8( )m
C.16( )m
D.16( )m
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=36°,
(1)作出AB邊的垂直平分線DE,交AC于點D,交AB于點E,連接BD;
(2)下列結論正確的是:
① BD平分∠ABC;② AD=BD=BC;③ △BDC的周長等于AB+BC; ④ D點是AC中點;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的邊AB=3cm,AD=4cm,點E從點A出發(fā),沿射線AD移動,以CE為直徑作圓O,點F為圓O與射線BD的公共點,連接EF、CF,過點E作EG⊥EF,EG與圓O相交于點G,連接CG.
(1)試說明四邊形EFCG是矩形;
(2)當圓O與射線BD相切時,點E停止移動,在點E移動的過程中, ①矩形EFCG的面積是否存在最大值或最小值?若存在,求出這個最大值或最小值;若不存在,說明理由;
②求點G移動路線的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=8cm.BC=4cm,CD=5cm.動點P從點B開始沿折線BC﹣CD﹣DA以1cm/s的速度運動到點A.設點P運動的時間為t(s),△PAB面積為S(cm2).
(1)當t=2時,求S的值;
(2)當點P在邊DA上運動時,求S關于t的函數表達式;
(3)當S=12時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系xOy中,一次函數y=﹣ x+b(b為常數,b>0)的圖象與x軸、y軸分別相交于點A、B,半徑為4的⊙O與x軸正半軸相交于點C,與y軸相交于點D、E,點D在點E上方.
(1)若直線AB與 有兩個交點F、G. ①求∠CFE的度數;
②用含b的代數式表示FG2 , 并直接寫出b的取值范圍;
(2)設b≥5,在線段AB上是否存在點P,使∠CPE=45°?若存在,請求出P點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】江漢平原享有“中國小龍蝦之鄉(xiāng)”的美稱,甲、乙兩家農貿商店,平時以同樣的價格出售品質相同的小龍蝦,“龍蝦節(jié)”期間,甲、乙兩家商店都讓利酬賓,付款金額y甲、y乙(單位:元)與原價x(單位:元)之間的函數關系如圖所示:
(1)直接寫出y甲 , y乙關于x的函數關系式;
(2)“龍蝦節(jié)”期間,如何選擇甲、乙兩家商店購買小龍蝦更省錢?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com