如圖所示,四邊形ABCD為正方形,△BEF為等腰直角三角形(∠BFE=90°,點(diǎn)B、E、F按逆時(shí)針順序),P為DE的中點(diǎn),連接PC、PF.
(1)如圖(1),E點(diǎn)在邊BC上,則線段PC、PF的數(shù)量關(guān)系為_(kāi)_____,位置關(guān)系為_(kāi)_____(不需要證明).
(2)如圖(2),將△BEF繞B點(diǎn)順時(shí)針旋轉(zhuǎn)α°(0<α<45),則線段PC、PF有何數(shù)量關(guān)系和位置關(guān)系?請(qǐng)寫(xiě)出你的結(jié)論并證明.
(3)如圖(3),E點(diǎn)旋轉(zhuǎn)到圖中的位置,其它條件不變,完成圖(3),則線段PC、PF有何數(shù)量關(guān)系和位置關(guān)系?直接寫(xiě)出你的結(jié)論,不需要證明.
(1)∵∠BFE=90°,點(diǎn)P為DE的中點(diǎn)
∴PF=PD=PE,
同理可得PC=PD=PE,
∴PC=PF,
又∵∠FPE=2∠FDP,∠CPE=2∠PDC,
∴∠FPC=2∠FDC=90°,
所以PC=PF,PC⊥PF.
故答案為:相等、垂直;

(2)PC⊥PF,PF=PC.理由如下:
延長(zhǎng)FP至G使PG=PF,連DG,GC,F(xiàn)C,延長(zhǎng)EF交BD于N,如圖,
∵點(diǎn)P為DE的中點(diǎn),
∴△PDG≌△PEF,
∴DG=EF=BF.
∴∠PEF=∠PDG,
∴ENDG,
∴∠BNE=∠BDG=45°+∠CDG=90°-∠NBF=90°-(45°-∠FBC)
∴∠FBC=∠GDC,
∴△BFC≌△DGC,
∴FC=CG,∠BCF=∠DCG.
∴∠FCG=∠BCD=90°.
∴△FCG為等腰Rt△,
∵PF=PG,
∴PC⊥PF,PF=PC;

(3)畫(huà)圖:
線段PC、PF有何數(shù)量關(guān)系相等,位置關(guān)系垂直.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法中錯(cuò)誤的是( 。
A.四個(gè)角相等的四邊形是矩形
B.四條邊相等的四邊形是正方形
C.對(duì)角線相等的菱形是正方形
D.對(duì)角線垂直的矩形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD中,E是CD的中點(diǎn),AE的垂直平分線FM交AB的延長(zhǎng)線于F,交BC于P,連接EF,交BC于G,求EP:PC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,正方形ABCD中,∠FOE=90°,頂點(diǎn)O與D點(diǎn)重合,交直線BC于E,交直線BA于F.
(1)求證:OF=OE;
(2)如圖②,若O點(diǎn)在射線BD上運(yùn)動(dòng),其它條件不變,上述結(jié)論是否仍然成立?畫(huà)出圖形,直接寫(xiě)出結(jié)論;
(3)如圖③,O為正方形ABCD對(duì)角線的中點(diǎn),∠FOE=90°且繞點(diǎn)O旋轉(zhuǎn),交BC、CD邊于F、E點(diǎn).(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,點(diǎn)P是在線段BC上任意一點(diǎn)(與點(diǎn)B不重合),∠BPE=
1
2
∠BCA,PE交BO于點(diǎn)E,過(guò)點(diǎn)B作BF⊥PE,垂足為F,交AC于點(diǎn)G.
(1)若ABCD為正方形,
①如圖(1),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí).△BOG是否可由△POE通過(guò)某種圖形變換得到?證明你的結(jié)論;
②結(jié)合圖(2)求
BF
PE
的值;
(2)如圖(3),若ABCD為菱形,記∠BCA=α,請(qǐng)?zhí)骄坎⒅苯訉?xiě)出
BF
PE
的值.(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在正方形ABCD中,E是BC的中點(diǎn),F(xiàn)是CD上的一點(diǎn),AE⊥EF,則下列結(jié)論正確的是( 。
A.∠BAE=30°B.△ABE≌△AEFC.CE2=AB•CFD.CF=
1
3
CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖甲,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問(wèn)題:
(1)如果AB=AC,∠BAC=90°,
①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線段CF、BD之間的位置關(guān)系為_(kāi)_____,數(shù)量關(guān)系為_(kāi)_____.
②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖丙,①中的結(jié)論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90°點(diǎn)D在線段BC上運(yùn)動(dòng).試探究:當(dāng)△ABC滿足一個(gè)什么條件時(shí),CF⊥BC(點(diǎn)C、F重合除外)?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在正方形ABCD中,點(diǎn)E、F分別在CD、BC上,且BF=CE,連接BE、AF相交于點(diǎn)G,則下列結(jié)論不正確的是( 。
A.BE=AFB.∠DAF=∠BEC
C.∠AFB+∠BEC=90°D.AG⊥BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方形ABCD中,DEAC,DE交BC的延長(zhǎng)線于E,若AB=2厘米,則下列結(jié)論錯(cuò)誤的是( 。
A.四邊形ACED是平行四邊形
B.四邊形ACED的面積是4平方厘米
C.DO=1厘米
D.∠DAE=22.5°

查看答案和解析>>

同步練習(xí)冊(cè)答案