如圖,A,B,C三點(diǎn)在⊙O上,且AB是⊙O的直徑,半徑OD⊥AC,垂足為F,若∠A=30°,OF=3,則BC=   
【答案】分析:根據(jù)垂徑定理和30°的角易得圓的半徑為2OF,即可求得直徑;易得∠C為90°,那么BC等于直徑AB的一半.
解答:解:∵OD⊥AC,垂足為F
∴△AFO是直角三角形,∠A=30°
∴OA=2OF=2×3=6
∴AB=2×6=12
又∵AB是圓的直徑,∠ACB為圓周角
∴∠ACB=90°
在Rt△ABC中,A=30°
∴BC=AB=×12=6.
點(diǎn)評:本題涉及面較廣,涉及垂徑定理以及特殊角的三角函數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,A、C、E三點(diǎn)在同一條直線上,△DAC和△EBC都是等邊三角形,AE、BD分別與CD、CE交于點(diǎn)M、N,有如下結(jié)論:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正確結(jié)論的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,A、Q、R三點(diǎn)在一條直線上,S為直線外一點(diǎn),∠AQS=136°,∠QRS=64°,則∠QSR=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,A,B,C三點(diǎn)在同一平面內(nèi),從山腳纜車站A測得山頂C的仰角為45°,測得另一纜精英家教網(wǎng)車站B的仰角為30°,AB間纜繩長500米(自然彎曲忽略不計(jì)).(
3
≈1.73
,精確到1米)
(1)求纜車站B與纜車站A間的垂直距離;
(2)乘纜車達(dá)纜車站B,從纜車站B測得山頂C的仰角為60°,求山頂C與纜車站A間的垂直距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,A、B、C三點(diǎn)在⊙O上,∠BAC=60°,若⊙O的半徑OC為12,則劣弧BC的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,A,O,B三點(diǎn)在同一直線上,OC,OE分別是∠BOD,∠AOD的平分線,OC與OE有什么位置關(guān)系?為什么?

查看答案和解析>>

同步練習(xí)冊答案