對(duì)于二次函數(shù)y=ax2+bx+c(a≠0),如果當(dāng)x取任意整數(shù)時(shí),函數(shù)值y都是整數(shù),此時(shí)稱(chēng)該點(diǎn)(x,y)為整點(diǎn),該函數(shù)的圖象為整點(diǎn)拋物線(例如:y=x2+2x+2).
(1)請(qǐng)你寫(xiě)出一個(gè)二次項(xiàng)系數(shù)的絕對(duì)值小于1的整點(diǎn)拋物線的解析式______(不必證明);
(2)請(qǐng)直接寫(xiě)出整點(diǎn)拋物線y=x2+2x+2與直線y=4圍成的陰影圖形中(不包括邊界)所含的整點(diǎn)個(gè)數(shù)有______個(gè).
(1)y=
1
2
x2+
1
2
x+1

y=
1
2
x2+
3
2
x+1

y=
1
2
x2+
1
2
x+2
等;

(2)觀察圖形,可知拋物線y=x2+2x+2與直線y=4圍成的陰影圖形中(不包括邊界)所含的整點(diǎn)有
(-1,2),(-1,3),(-2,3),(0,3),一共4個(gè).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中:已知拋物線y=-
1
2
x2+(m2-m-
5
2
)x+
1
3
(5m+8)
的對(duì)稱(chēng)軸為x=-
1
2
,設(shè)拋物線與y軸交于A點(diǎn),與x軸交于B、C兩點(diǎn)(B點(diǎn)在C點(diǎn)的左邊),銳角△ABC的高BE交AO于點(diǎn)H.
(1)求拋物線的解析式;
(2)在(1)中的拋物線上是否存在點(diǎn)P,使BP將△ABH的面積分成1:3兩部分?如果存在,求出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(-4,0),B(-1,3),C(-3,3)
(1)求此二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)的對(duì)稱(chēng)軸為直線l,該圖象上的點(diǎn)P(m,n)在第三象限,其關(guān)于直線l的對(duì)稱(chēng)點(diǎn)為M,點(diǎn)M關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為N,若四邊形OAPN的面積為20,求m、n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,半徑為1的動(dòng)圓P圓心在拋物線y=(x-2)2-1上,當(dāng)⊙P與x軸相切時(shí),點(diǎn)P的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

明珠大劇場(chǎng)座落在聊城東昌湖西岸,其上部為能夠旋轉(zhuǎn)的拱形鋼結(jié)構(gòu),并且具有開(kāi)啟、閉合功能,全國(guó)獨(dú)-無(wú)二,如圖1.舞臺(tái)頂部橫剖面拱形可近似看作拋物線的一部分,其中舞臺(tái)高度1.15米,臺(tái)口高度13.5米,臺(tái)口寬度29米,如圖2.以ED所在直線為x軸,過(guò)拱頂A點(diǎn)且垂直于ED的直線為y軸,建立平面直角坐標(biāo)系.
(1)求拱形拋物線的函數(shù)關(guān)系式;
(2)舞臺(tái)大幕懸掛在長(zhǎng)度為20米的橫梁MN上,其下沿恰與舞臺(tái)面接觸,求大幕的高度?(精確到0.01米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某涵洞的截面是拋物線型,如圖所示,在圖中建立的直角坐標(biāo)系中,拋物線的解析式為y=-
1
4
x2,當(dāng)涵洞水面寬AB為12米時(shí),水面到橋拱頂點(diǎn)O的距離為_(kāi)_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

用長(zhǎng)為100cm的鐵絲做一個(gè)矩形框子.
(1)能做成矩形框的面積為800cm2嗎?如果能求出長(zhǎng)和寬,如果不能請(qǐng)說(shuō)明理由.
(2)請(qǐng)說(shuō)明能?chē)傻木匦巫畲竺娣e是多少?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某工廠準(zhǔn)備翻建新的廠門(mén),廠門(mén)要求設(shè)計(jì)成軸對(duì)稱(chēng)的拱型曲線.已知廠門(mén)的最大寬度AB=12m,最大高度OC=4m,工廠的特種運(yùn)輸卡車(chē)的高度是3m,寬度是5.8m.現(xiàn)設(shè)計(jì)了兩種方案:方案一:建成拋物線形狀;方案二:建成圓弧形狀(如圖).為確保工廠的特種卡車(chē)在通過(guò)廠門(mén)時(shí)更安全,你認(rèn)為應(yīng)采用哪種設(shè)計(jì)方案?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-x2+2x+3與x軸交于A、B兩點(diǎn),與y軸于點(diǎn)C,點(diǎn)D為對(duì)稱(chēng)軸l上的一個(gè)動(dòng)點(diǎn).
(1)求當(dāng)AD+CD最小時(shí),點(diǎn)D的坐標(biāo);
(2)以點(diǎn)A為圓心,以AD為半徑作⊙A
①證明:當(dāng)AD+CD最小時(shí),直線BD與⊙A相切.
②寫(xiě)出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo)______.

查看答案和解析>>

同步練習(xí)冊(cè)答案