已知:⊙O的半徑為2cm,弦AB所對(duì)的劣弧為圓的,則弦AB的長(zhǎng)為    cm,圓心到弦AB的距離為    cm;
半徑為4cm,120°的圓心角所對(duì)的弦長(zhǎng)為   
【答案】分析:連接OA、OB,過O作OC⊥AB于C,求出∠AOB,∠AOC,求出OC=OA,根據(jù)勾股定理求出AC,根據(jù)垂徑定理得出AB=2AC,求出即可.
解答:
解:連接OA、OB,過O作OC⊥AB于C,
∵弦AB所對(duì)的劣弧為圓的,
∴∠AOB=×360°=120°,
∵OC⊥AB,OC過O,OA=OB,
∴AB=2AC,∠AOC=∠AOB=60°,∠ACO=90°,
∴∠A=90°-60°=30°,
∵OA=2cm,
∴OC=OA=1cm,
在Rt△ACO中,AO=2cm,OC=1cm,由勾股定理得:AC=cm,
∴AB=2AC=2cm,
當(dāng)OA=4cm時(shí),OC=2cm,由勾股定理得:AC=2cm,
AB=4cm,
故答案為:2,14cm
點(diǎn)評(píng):本題考查了含30度角的直角三角形,勾股定理,垂徑定理等知識(shí)點(diǎn)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:⊙O的半徑為1,M為⊙O外的一點(diǎn),MA切⊙O于點(diǎn)A,MA=1.若AB是⊙O的弦,且AB=
2
,則MB的長(zhǎng)度為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、已知兩圓的半徑為2和5,圓心距為4,則兩圓的公切線有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正六邊形的半徑為2,則這個(gè)正六邊形的面積是( 。
A、6
B、12
C、6
3
D、12
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

桌面上有大小兩顆球,相互靠在一起.已知大球的半徑為20cm,小球半徑5cm,則這兩顆球分別與桌面相接觸的兩點(diǎn)之間的距離等于
 
 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知大圓的半徑為5.6厘米,小圓的半徑為1.4厘米,計(jì)算陰影部分的面積S(π取3.14.)

查看答案和解析>>

同步練習(xí)冊(cè)答案