如圖,已知點(diǎn)A的坐標(biāo)為(
3
,3),AB丄x軸,垂足為B,連接OA,反比例函數(shù)y=
k
x
(k>0)的圖象與線段OA、AB分別交于點(diǎn)C、D.若AB=3BD,以點(diǎn)C為圓心,CA的
5
4
倍的長(zhǎng)為半徑作圓,則該圓與x軸的位置關(guān)系是______(填”相離”,“相切”或“相交“).
∵已知點(diǎn)A的坐標(biāo)為(
3
,3),AB=3BD,
∴AB=3,BD=1,
∴D點(diǎn)的坐標(biāo)為(
3
,1),
∴反比例函數(shù)y=
k
x
解析式為:
y=
3
x
,
∴AO直線解析式為:y=kx,
3=
3
k,
∴k=
3
,
∴y=
3
x,
∴直線y=
3
x與反比例函數(shù)y=
3
x
的交點(diǎn)坐標(biāo)為:
x=±1,
∴C點(diǎn)的橫坐標(biāo)為1,
縱坐標(biāo)為:
3
,
過(guò)C點(diǎn)做CE垂直于OB于點(diǎn)E,
則CO=2,
∴AC=2
3
-2,
∴CA的
5
4
倍=
5
2
(
3
-1)
,
CE=
3
,
5
2
(
3
-1)
-
3
=
3
2
3
-
5
2
>0,
∴該圓與x軸的位置關(guān)系是相交.
故答案為:相交.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°,O為BC邊上一點(diǎn),以O(shè)為圓心,OB為半徑作半圓與AB邊和BC邊分別交于點(diǎn)D、點(diǎn)E,連接CD,且CD=CA,BD=6
5
,tan∠ADC=2.
(1)求證:CD是半圓O的切線;
(2)求半圓O的直徑;
(3)求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于點(diǎn)D,DE⊥AC,交AC的延長(zhǎng)線于點(diǎn)E,OE交AD于點(diǎn)F.
(1)求證:DE是⊙O的切線;
(2)若⊙O的半徑OA=5,弦AC的長(zhǎng)是6.
①求DE的長(zhǎng);
②請(qǐng)直接寫(xiě)出
DF
AF
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知PA是⊙O的切線,A為切點(diǎn),PBC是過(guò)點(diǎn)O的割線,PA=10cm,PB=5cm,則⊙O的半徑長(zhǎng)為( 。
A.15cmB.10cmC.7.5cmD.5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O的半徑為5cm,直線l⊥OA交⊙O于點(diǎn)C、D,垂足為B,且CD=8cm,則直線l沿半徑OA向下平移______cm時(shí)與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AM、AN分別切⊙O于M、N兩點(diǎn),點(diǎn)B在⊙O上,且∠MBN=70°,則∠A=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,⊙O的半徑OD為5cm,直線l⊥OD,垂足為O,則直線l沿射線OD方向平移______cm時(shí)與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,PA、PB切⊙O于點(diǎn)A、B,AC是⊙O的直徑,且∠BAC=35°,則∠P=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

自圓外一點(diǎn)向圓引兩條切線所形成的夾角為60°,若切線長(zhǎng)為5cm,則此圓的半徑為_(kāi)_____cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案