(﹣0.25)2006×42006=(    )
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問題:如圖(1),一圓柱的底面半徑、高均為5cm,BC是底面直徑,求一只螞蟻從A點(diǎn)出發(fā)沿圓柱表面爬行到點(diǎn)C的最短路線.小明設(shè)計(jì)了兩條路線:
路線1:側(cè)面展開圖中的線段AC.如下圖(2)所示:
設(shè)路線1的長(zhǎng)度為l1,則l12=AC2=AB2+
BC
2=52+(5π)2=25+25π2
路線2:高線AB+底面直徑BC.如上圖(1)所示:
設(shè)路線2的長(zhǎng)度為l2,則l22=(AB+BC)2=(5+10)2=225
精英家教網(wǎng)
精英家教網(wǎng)

l12-l22=25+25π2-225=25π2-200=25(π2-8)>0
∴l(xiāng)12>l22,∴l(xiāng)1>l2
所以要選擇路線2較短.
(1)小明對(duì)上述結(jié)論有些疑惑,于是他把條件改成:“圓柱的底面半徑為1cm,高AB為5cm”繼續(xù)按前面的路線進(jìn)行計(jì)算.請(qǐng)你幫小明完成下面的計(jì)算:
路線1:l12=AC2=
 
;
路線2:l22=(AB+BC)2=
 

∵l12
 
l22,
∴l(xiāng)1
 
l2(填>或<)
∴選擇路線
 
(填1或2)較短.
(2)請(qǐng)你幫小明繼續(xù)研究:在一般情況下,當(dāng)圓柱的底面半徑為r,高為h時(shí),應(yīng)如何選擇上面的兩條路線才能使螞蟻從點(diǎn)A出發(fā)沿圓柱表面爬行到C點(diǎn)的路線最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問題:如圖(2),一圓柱的高AB=5dm,底面半徑為5dm,BC是底面直徑,求一只螞蟻從A點(diǎn)出發(fā)沿圓柱表面爬行到點(diǎn)C的最短路線.小明設(shè)計(jì)了兩條路線:
路線1:沿側(cè)面展開圖中的線段AC.如下圖(2)所示:
精英家教網(wǎng)
設(shè)路線1的長(zhǎng)度為l1,則l12=AC2=AB2+BC2=52+(5π)2=25+25π2
路線2:高線AB+底面直徑BC.如上圖(1)所示:
設(shè)路線2的長(zhǎng)度為l2,則l22=(AB+BC)2=(5+10)2=225
∵l12-l22=25+25π2-225=25π2-200=25(π2-8)>0
∴l(xiāng)12>l22,∴l(xiāng)1>l2
所以要選擇路線2較短.
(1)小明對(duì)上述結(jié)論有些疑惑,于是他把條件改成:“圓柱的底面半徑為1dm,高AB仍為5dm”繼續(xù)按前面的路線進(jìn)行計(jì)算.請(qǐng)你幫小明完成下面的計(jì)算:
路線1:l12=AC2=AB2+BC2=
 
;
路線2:l22=(AB+BC)2=
 

∵l12
 
l22,∴l(xiāng)1
 
l2( 填>或<)
所以應(yīng)選擇路線
 
(填1或2)較短.
(2)請(qǐng)你幫小明繼續(xù)研究:設(shè)圓柱的底面半徑為r,高為h,當(dāng)螞蟻?zhàn)呱鲜鰞蓷l路線的路程出現(xiàn)相等情況時(shí),求出此時(shí)h與r的比值(本小題π的值取3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年蘇教版初中數(shù)學(xué)八年級(jí)上5.2一次函數(shù)練習(xí)卷(解析版) 題型:填空題

某種儲(chǔ)蓄的月利率是0.25%,存入200元本金后,則本息和y元與所存月數(shù)x之間函數(shù)關(guān)系式為_______________

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年西部地區(qū)九年級(jí)(上)第三次聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

請(qǐng)閱讀下列材料:
問題:如圖(1),一圓柱的底面半徑、高均為5cm,BC是底面直徑,求一只螞蟻從A點(diǎn)出發(fā)沿圓柱表面爬行到點(diǎn)C的最短路線.小明設(shè)計(jì)了兩條路線:
路線1:側(cè)面展開圖中的線段AC.如下圖(2)所示:
設(shè)路線1的長(zhǎng)度為l1,則l12=AC2=AB2+2=52+(5π)2=25+25π2
路線2:高線AB+底面直徑BC.如上圖(1)所示:
設(shè)路線2的長(zhǎng)度為l2,則l22=(AB+BC)2=(5+10)2=225



l12-l22=25+25π2-225=25π2-200=25(π2-8)>0
∴l(xiāng)12>l22,∴l(xiāng)1>l2
所以要選擇路線2較短.
(1)小明對(duì)上述結(jié)論有些疑惑,于是他把條件改成:“圓柱的底面半徑為1cm,高AB為5cm”繼續(xù)按前面的路線進(jìn)行計(jì)算.請(qǐng)你幫小明完成下面的計(jì)算:
路線1:l12=AC2=______;
路線2:l22=(AB+BC)2=______
∵l12______l22
∴l(xiāng)1______l2(填>或<)
∴選擇路線______(填1或2)較短.
(2)請(qǐng)你幫小明繼續(xù)研究:在一般情況下,當(dāng)圓柱的底面半徑為r,高為h時(shí),應(yīng)如何選擇上面的兩條路線才能使螞蟻從點(diǎn)A出發(fā)沿圓柱表面爬行到C點(diǎn)的路線最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河北省唐山市開平區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

請(qǐng)閱讀下列材料:
問題:如圖(1),一圓柱的底面半徑、高均為5cm,BC是底面直徑,求一只螞蟻從A點(diǎn)出發(fā)沿圓柱表面爬行到點(diǎn)C的最短路線.小明設(shè)計(jì)了兩條路線:
路線1:側(cè)面展開圖中的線段AC.如下圖(2)所示:
設(shè)路線1的長(zhǎng)度為l1,則l12=AC2=AB2+2=52+(5π)2=25+25π2
路線2:高線AB+底面直徑BC.如上圖(1)所示:
設(shè)路線2的長(zhǎng)度為l2,則l22=(AB+BC)2=(5+10)2=225



l12-l22=25+25π2-225=25π2-200=25(π2-8)>0
∴l(xiāng)12>l22,∴l(xiāng)1>l2
所以要選擇路線2較短.
(1)小明對(duì)上述結(jié)論有些疑惑,于是他把條件改成:“圓柱的底面半徑為1cm,高AB為5cm”繼續(xù)按前面的路線進(jìn)行計(jì)算.請(qǐng)你幫小明完成下面的計(jì)算:
路線1:l12=AC2=______;
路線2:l22=(AB+BC)2=______
∵l12______l22
∴l(xiāng)1______l2(填>或<)
∴選擇路線______(填1或2)較短.
(2)請(qǐng)你幫小明繼續(xù)研究:在一般情況下,當(dāng)圓柱的底面半徑為r,高為h時(shí),應(yīng)如何選擇上面的兩條路線才能使螞蟻從點(diǎn)A出發(fā)沿圓柱表面爬行到C點(diǎn)的路線最短.

查看答案和解析>>

同步練習(xí)冊(cè)答案