【題目】已知∠1與∠2是兩條直線被第三條直線所截形成的同位角,若∠1=60°,則∠2為(
A.160°
B.120°
C.60°或120
D.不能確定

【答案】D
【解析】解:∵∠1與∠2是兩條直線被第三條直線所截的同位角,兩條直線不一定平行, ∴∠2不能確定.
故選:D.
【考點精析】解答此題的關(guān)鍵在于理解同位角、內(nèi)錯角、同旁內(nèi)角的相關(guān)知識,掌握兩條直線被第三條直線所截形成八個角,它們構(gòu)成了同位角、內(nèi)錯角與同旁內(nèi)角;判別同位角、內(nèi)錯角或同旁內(nèi)角的關(guān)鍵是找到構(gòu)成這兩個角的“三線”,有時需要將有關(guān)的部分“抽出”或把無關(guān)的線略去不看,有時又需要把圖形補全.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在一次60秒跳繩測試中,10名同學跳的次數(shù)分別為170,190,180,150,180,180,160,200,180,190,則這次測試所跳次數(shù)的眾數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點B出發(fā),沿對角線BD向點D勻速運動,速度為4cm/s,過點PPQ⊥BDBC于點Q,以PQ為一邊作正方形PQMN,使得點N落在射線PD上,點O從點D出發(fā),沿DC向點C勻速運動,速度為3m/s,以O為圓心,0.8cm為半徑作⊙O,點P與點O同時出發(fā),設它們的運動時間為t(單位:s)(0t).

1)如圖1,連接DQ平分∠BDC時,t的值為 ;

2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;

3)請你繼續(xù)進行探究,并解答下列問題:

證明:在運動過程中,點O始終在QM所在直線的左側(cè);

如圖3,在運動過程中,當QM⊙O相切時,求t的值;并判斷此時PM⊙O是否也相切?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】[探究函數(shù)的圖象與性質(zhì)]

(1)函數(shù)的自變量的取值范圍是 ;

(2)下列四個函數(shù)圖象中函數(shù)的圖象大致是 ;

(3)對于函數(shù),求當時, 的取值范圍.

請將下列的求解過程補充完整.

解:∵

.

[拓展運用]

(4)若函數(shù),則的取值范圍 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知1號、4號兩個正方形的面積和為10, 2號、3號兩個正方形的面積和為7,則a,b,c三個方形的面積和為( )

A.17
B.27
C.24
D.34

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】|﹣9|的平方根等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從﹣3,﹣1, ,1,3這五個數(shù)中,隨機抽取一個數(shù),記為a,若數(shù)a使關(guān)于x的不等式組 無解,且使關(guān)于x的分式方程=﹣1有整數(shù)解,那么這5個數(shù)中所有滿足條件的a的值之和是( 。

A. ﹣2 B. ﹣3 C. - D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=90°,OA=90cm,OB=30cm,一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O,機器人立即從點B出發(fā),沿直線立即從點B出發(fā),沿直線勻速前進攔截小球,恰好在點C處截住了小球,如果小球滾動的速度與機器人行走的速度相等,那么機器人行走的路程BC是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將P向右平移2個單位,再向下平移2個單位得點P′(3,2),則點P的坐標為_____

查看答案和解析>>

同步練習冊答案