如圖所示,⊙O的直徑AB長(zhǎng)為6,弦AC長(zhǎng)為2,∠ACB的平分線交⊙O于點(diǎn)D,求四邊形ADBC的面積.

【答案】分析:四邊形ADBC可分作兩部分:
①△ABC,由圓周角定理知∠ACB=90°,Rt△ACB中,根據(jù)勾股定理即可求得直角邊BC的長(zhǎng),進(jìn)而可根據(jù)直角三角形的面積計(jì)算方法求出△ABC的面積;
②△ABD,由于CD平分∠ACB,則弧AD=弧BD,由此可證得△ABD是等腰Rt△,即可根據(jù)斜邊的長(zhǎng)求出兩條直角邊的長(zhǎng),進(jìn)而可得到△ABD的面積;
上述兩個(gè)三角形的面積和即為四邊形ADBC的面積,由此得解.
解答:解:∵AB是直徑,∴∠ACB=∠ADB=90°,
在Rt△ABC中,AB=6,AC=2,∴BC===4;
∵∠ACB的平分線交⊙O于點(diǎn)D,∴∠DCA=∠BCD;
,
∴AD=BD;
∴在Rt△ABD中,AD=BD=3,AB=6,
∴四邊形ADBC的面積=S△ABC+S△ABD=AC•BC+AD•BD
=×2×4+×3×3=9+4
故四邊形ADBC的面積是9+4
點(diǎn)評(píng):此題主要考查了圓周角定理,圓心角、弧、弦的關(guān)系,直角三角形的性質(zhì),勾股定理等知識(shí)的綜合應(yīng)用能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,⊙O的直徑AB=4,點(diǎn)P是AB延長(zhǎng)線上的一點(diǎn),過P點(diǎn)作⊙O的切線,切點(diǎn)精英家教網(wǎng)為C,連接AC.
(1)若∠CPA=30°,求PC的長(zhǎng);
(2)若點(diǎn)P在AB的延長(zhǎng)線上運(yùn)動(dòng),∠CPA的平分線交AC于點(diǎn)M,你認(rèn)為∠CMP的大小是否發(fā)生變化?若變化,請(qǐng)說明理由;若不變化,求出∠CMP的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,⊙O的直徑AB=2,AD,BC是它的兩條切線,且CD與⊙O相切于點(diǎn)E,交AD,BC于精英家教網(wǎng)點(diǎn)D,C,設(shè)AD=x,BC=y.
(1)求證:AD+BC=CD;
(2)求y關(guān)于x的函數(shù)關(guān)系,并畫去它的圖象;
(3)若x,y是方程2t2-5t+m=0的兩根,求x,y的值;
(4)求四邊形的ABCD的面積S,(用字母表示)并證明S≥2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,⊙O的直徑AB垂直于弦CD,AB、CD相交于點(diǎn)E,∠COD=100°,求∠COE,∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,⊙O的直徑的長(zhǎng)是關(guān)于x的二次方程x2+2(k-2)x+k=0(k是整數(shù))的最大整數(shù)根. P是⊙O外一點(diǎn),過點(diǎn)P作⊙O的切線PA和割線PBC,其中A為切點(diǎn),點(diǎn)B,C是直線PBC與⊙O的交點(diǎn).若PA,PB,PC的長(zhǎng)都是正整數(shù),且PB的長(zhǎng)不是合數(shù),求PA2+PB2+PC2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,⊙O的直徑AB和弦CD交于E,已知AE=6cm,EB=2cm,∠CEA=30°,求圓心O到CD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案