如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)的圖象和矩形ABCD的第一象限,AD平行于x軸,且AB=2,AD=4,點(diǎn)A的坐標(biāo)為(2,6) .
(1)直接寫出B、C、D三點(diǎn)的坐標(biāo);
(2)若將矩形向下平移,矩形的兩個頂點(diǎn)恰好同時落在反比例函數(shù)的圖象上,猜想這是哪兩個點(diǎn),并求矩形的平移距離和反比例函數(shù)的解析式.
解:(1)B(2,4),C(6,4),D(6,6)。
(2)猜想矩形的A、C兩頂點(diǎn)恰好同時落在反比例函數(shù)的圖象上。
如圖,矩形ABCD向下平移后得到矩形,
設(shè)平移距離為a,則A′(2,6-a),C′(6,4-a)。
∵點(diǎn)A′,點(diǎn)C′在的圖象上,
∴,解得。
∴矩形的平移距離為3,反比例函數(shù)的解析式為。
解析試題分析:(1)根據(jù)矩形的對邊平行且相等的性質(zhì)即可得到B、C、D三點(diǎn)的坐標(biāo)。
(2)從矩形的平移過程發(fā)現(xiàn)只有A、C兩點(diǎn)能同時在雙曲線上,設(shè)平移距離為a,得到A′(2,6-a),C′(6,4-a),代入中,得到關(guān)于a、k的方程組從而求得a、k的值,從而得到矩形的平移距離和反比例函數(shù)的解析式。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形OABC的頂點(diǎn)A,C分別在x,y軸的正半軸上,點(diǎn)D為對角線OB的中點(diǎn),點(diǎn)E(4,n)在邊AB上,反比例函數(shù)y= (k≠0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D,E,且tan∠BOA=.
(1)求邊AB的長;
(2)求反比例函數(shù)的解析式和n的值;
(3)若反比例函數(shù)的圖象與矩形的邊BC交于點(diǎn)F,將矩形折疊,使點(diǎn)O與點(diǎn)F重合,折痕分別與x,y軸正半軸交于點(diǎn)H,G,求線段OG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,拋物線的頂點(diǎn)為A,與y軸的交點(diǎn)為B,連結(jié)AB,AC⊥AB,交y軸于點(diǎn)C,延長CA到點(diǎn)D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.
(1)當(dāng)m=2時,求點(diǎn)B的坐標(biāo);
(2)求DE的長?
(3)①設(shè)點(diǎn)D的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式?②過點(diǎn)D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個交點(diǎn)為P,當(dāng)m為何值時,以,A,B,D,P為頂點(diǎn)的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,一次函數(shù)y1=x+1的圖像與反比例函數(shù)(k為常數(shù),且k≠0)的圖像都經(jīng)過點(diǎn)A(m,2).
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖像直接比較:當(dāng)時,與的大小。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與雙曲線在第一象限內(nèi)交于點(diǎn)B,BC丄x軸于點(diǎn)C,OC=2AO.求雙曲線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點(diǎn)A(﹣2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點(diǎn)B(2,n),連接BO,若S△AOB=4.
(1)求該反比例函數(shù)的解析式和直線AB的解析式;
(2)若直線AB與y軸的交點(diǎn)為C,求△OCB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,雙曲線和直線y=kx+b交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(﹣3,2),BC⊥y軸于點(diǎn)C,且OC=6BC.
(1)求雙曲線和直線的解析式;
(2)直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線y=k1x+b(k1≠0)與雙曲線(k2≠0)相交于A(1,m)、B(﹣2,﹣1)兩點(diǎn).
(1)求直線和雙曲線的解析式.
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點(diǎn),且x1<x2<0<x3,請直接寫出y1,y2,y3的大小關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com