【題目】如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點C,AD⊥CD于點D.
(1)求證:AC平分∠DAB;
(2)若點E為 的中點,AD= ,AC=8,求AB和CE的長.

【答案】
(1)證明:連接OC,

∵直線CD與⊙O相切于點C,

∴OC⊥CD,

∵AD⊥CD,

∴OC∥AD,

∴∠DAC=∠OCA,

∵OA=OC,

∴∠OCA=∠OAC,

∴∠OAC=∠DAC,

即AC平分∠DAB


(2)連接BC,OE,過點A作AF⊥EC于點F,

∵AB是⊙O的直徑,

∴∠ACB=90°,

∴∠ACB=∠ADC,

∵∠DAC=∠BAC,

∴△ADC∽△ACB,

,

解得:AB=10,

∴BC= =6,

∵點E為 的中點,

∴∠AOE=90°,

∴OE=OA= AB=5,

∴AE= =5

∵∠AEF=∠B(同弧所對圓周角相等),∠AFE=∠ACB=90°,

∴△ACB∽△AFE,

,

∴AF=4 ,EF=3

∵∠ACF= ∠AOE=45°,

∴△ACF是等腰直角三角形,

∴CF=AF=4 ,

∴CE=CF+EF=7


【解析】(1)首先連接OC,由直線CD與⊙O相切于點C,AD⊥CD,易證得OC∥AD,繼而可得AC平分∠DAB;(2)首先連接BC,OE,過點A作AF⊥CE于點F,可證得△ADC∽△ACB,△ACB∽△AFE,△ACF是等腰直角三角形,然后由相似三角形的對應(yīng)邊成比例以及勾股定理,即可求得答案.
【考點精析】本題主要考查了等腰直角三角形和勾股定理的概念的相關(guān)知識點,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= 的圖象如圖,則二次函數(shù)y=2kx2﹣4x+k2的圖象大致為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小凡把果樹林分為兩部分,左地塊用新技術(shù)管理,右地塊用老方法管理,管理成本相同,她在左、右兩地塊上各隨機選取20棵果樹,按產(chǎn)品分成甲、乙、丙、丁四個等級(數(shù)據(jù)分組包括左端點不包括右端點),并制作如下兩幅不完整的統(tǒng)計圖:
(1)補齊左地塊統(tǒng)計圖,求右地塊乙級所對應(yīng)的圓心角的度數(shù);
(2)比較兩地塊的產(chǎn)量水平,并說明試驗結(jié)果;
(3)在左地塊隨機抽查一棵果樹,求該果樹產(chǎn)量為乙級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀理解下面的例題,再按要求解答下列問題:

例題:求代數(shù)式y2+4y+8的最小值.

解:y2+4y+8=y2+4y+4+4=(y+2)2+4

y+2)2≥0

y+2)2+4≥4

y2+4y+8的最小值是4.

(1)求代數(shù)式m2+m+4的最小值;

(2)求代數(shù)式4﹣x2+2x的最大值;

(3)某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上建一個長方形花園ABCD,花園一邊靠墻,另三邊用總長為20m的柵欄圍成.如圖,設(shè)AB=x(m),請問:當(dāng)x取何值時,花園的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)5m-7n-8p+5n-9m-p

(2)x4x5(-x7+5(x44-(x73÷x5.

【答案】(1)-4m-2n-9p;(2)3x16

【解析】

(1)先移項,再合并同類項;

(2)原式利用冪的乘方、同底數(shù)冪的乘法和除法法則計算,再合并即可得到結(jié)果.

(1)5m-7n-8p+5n-9m-p=5m-9m-7n+5n-8p-p=-4m-2n-9p;

(2)x4x5-x7+5x44-x73÷x5=- x4x5x7+5x16-x21÷x5=- x16 +5x16-x16=3x16

【點睛】

此題考查了冪的乘方、同底數(shù)冪的乘法、除法法則計算以及合并同類項,熟練掌握整式運算的有關(guān)法則是解答此題的關(guān)鍵.

型】解答
結(jié)束】
21

【題目】解方程(x-2)-(4x-1)=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點C

處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最

短距離為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知a+b=5,ab=-2,求代數(shù)式(6a-3b-2ab)-(a-8b-ab)的值;

(2)已知2x-y-4=0,9x27y÷81y的值

【答案】(1)27;(2)81.

【解析】

(1)運用整式的加減運算順序先去括號,再合并同類項,根據(jù)乘法的分配律將5a+5b變形為5(a+b),最后代入求值即可;

(2)根據(jù)冪的乘方,可得同底數(shù)冪的乘法,根據(jù)同底數(shù)冪的乘法,可得答案.

(1)原式=6a-3b-2ab-a+8b+ab=5a+5b-ab=5(a+b)-ab

當(dāng)a+b=5,ab=-2時,

原式=5×5-(-2)=27;

(2)9x27y÷81y=32x33y÷34y=32x-y,

2x-y-4=0,2x-y=4,

故原式=34=81.

【點睛】

本題考查了冪的乘方,同底數(shù)冪的乘法,整式的混合運算和求值的應(yīng)用,用了整體代入思想.

型】解答
結(jié)束】
23

【題目】根據(jù)要求完成下列題目:

(1)圖中有_____塊小正方體;

(2)請在下面方格紙中分別畫出它的主視圖、左視圖和俯視圖;

(3)用小正方體搭一幾何體,使得它的俯視圖和左視圖與你在圖方格中所畫的圖一致,若這樣的幾何體最少要m個小正方體,最多要n個小正方體,則m+n的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在湖邊高出水面50 m的山頂A處看見一艘飛艇停留在湖面上空某處,觀察到飛艇底部標(biāo)志P處的仰角為45°,又觀其在湖中之像的俯角為60°.則飛艇離開湖面的高度( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場打折前,買1A商品和1B商品用了20元,買30A商品和40B商品用了680元.打折后,買100A商品100B商品用了1800元.請根據(jù)上述信息解決下列問題:

(1)打折前A、B兩種商品的單價分別是多少?

(2)請在(1)的基礎(chǔ)上提出一個能使題目剩余條件解決的問題,并加以解決.

查看答案和解析>>

同步練習(xí)冊答案