【題目】如圖,二次函數(shù)y=2x2+m的圖像經(jīng)過點(0,-4),正方形ABCD的頂點C,D在x軸上,點A,B恰好在二次函數(shù)的圖像上,則圖中陰影部分的面積之和為_______.
【答案】8
【解析】
先把函數(shù)圖象經(jīng)過的點(0,-4)代入解析式求出m的值,再根據(jù)拋物線和正方形的對稱性求出OD=OC,并判斷出S陰影=S矩形BCOE,設(shè)點B的坐標(biāo)為(n,2n)(n>0),把點B的坐標(biāo)代入拋物線解析式求出n的值得到點B的坐標(biāo),然后求解即可.
∵二次函數(shù)y=2x2+m的圖象經(jīng)過點(0,-4),
∴m=-4,
∵四邊形ABCD為正方形,
又∵拋物線和正方形都是軸對稱圖形,且y軸為它們的公共對稱軸,
∴OD=OC,S陰影=S矩形BCOE,
設(shè)點B的坐標(biāo)為(n,2n)(n>0),
∵點B在二次函數(shù)y=2x2-4的圖象上,
∴2n=2n2-4,
解得,n1=2,n2=-1(舍負(fù)),
∴點B的坐標(biāo)為(2,4),
∴S陰影=S矩形BCOE=2×4=8.
故答案為:8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC中,AB=AC=4,∠BAC=100°,點D是底邊BC的動點(點D不與B、C重合),連接AD,作∠ADE=40°,DE與AC交于點E.
(1)當(dāng)DC等于多少時,△ABD與△DCE全等?請說明理由;
(2)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,求出∠BDA的度數(shù);若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,等邊△ABC的邊長為8,D為AC上的一個動點,延長AB到點E,使BE=CD,連接DE交BC于點P
(1)求證:DP=EP;
(2)若D為AC的中點,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點、、都在方格紙的格點上,方格紙中每個小正方形的邊長都是1.
(1)畫關(guān)于直線對稱的;
(2)在直線上找一點,使最;(要求在直線上標(biāo)出點的位置)
(3)連接、,計算四邊形PABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個多邊形的每一個內(nèi)角都相等,并且每個外角都等于和它相鄰的內(nèi)角的一半.
(1)求這個多邊形是幾邊形;
(2)求這個多邊形的每一個內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個案例,請補充完整.
(1)嘗試探究
如圖(1),在正方形ABCD中,對角線AC、BD相交于點O,點E是BC邊上一點,AE與BD交于點G,過點E作EF⊥AE交AC于點F,若=2,則的值是 ;
(2)拓展遷移
如圖(2),在矩形ABCD中,過點B作BH⊥AC于點O,交AD相于點H,點E是BC邊上一點,AE與BH相交于點G,過點E作EF⊥AE交AC于點F.
①若∠BAE=∠ACB,sin∠EAF=,求tan∠ACB;
②若,=b(a>0,b>0),求的值(用含a,b的代數(shù)式表示).
圖(1) 圖(2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,是某公園的平面示意圖,分別是該公園的四個入口,兩條主干道交于點,經(jīng)測量,,,請你幫助公園的管理人員解決以下問題:
(1)公園的面積為 ;
(2)如圖②,公園管理人員在參觀了武漢東湖綠道后,為提升游客游覽的體驗感,準(zhǔn)備修建三條綠道,其中點在上,點在上,且(點與點不重合),并計劃在與兩塊綠地所在區(qū)域種植郁金香,求種植郁金香區(qū)域的面積;
(3)若修建(2)中的綠道每千米費用為10萬元,請你畫出該公園修建這三條綠道投入資金最小值時的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請將下列事件發(fā)生的概率標(biāo)在圖中:
(1)從高處拋出的物體必落到地面;
(2)從裝有個紅球的袋子中任取一個,取出的球是白球;
(3)月亮繞著地球轉(zhuǎn);
(4)從裝有個紅球、個白球的口袋中任取一個球,恰好是紅球(這些球除顏色外完全相同);
(5)三名選手抽簽決定比賽順序(有三個簽,分別寫有,,),抽到寫有的簽.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com