【題目】如圖∠A=∠ABC=∠C=45°,E、F分別是AB、BC的中點(diǎn),則下列結(jié)論,①EF⊥BD,②EF=BD,③∠ADC=∠BEF+∠BFE,④AD=DC,其中正確的是( 。
A. ①②③④ B. ①②③ C. ①②④ D. ②③④
【答案】B
【解析】
根據(jù)三角形的中位線定理“三角形的中位線平行于第三邊”同時(shí)利用全等三角形的性質(zhì)求解.
如下圖所示:連接AC,延長BD交AC于點(diǎn)M,延長AD交BC于Q,延長CD交AB于P.∵∠ABC=∠C=45°,∴CP⊥AB,∵∠ABC=∠A=45°,∴AQ⊥BC,點(diǎn)D為兩條高的交點(diǎn),所以BM為AC邊上的高,即:BM⊥AC,由中位線定理可得EF∥AC,EF=AC,∴BD⊥EF,故①正確;∵∠DBQ+∠DCA=45°,∠DCA+∠CAQ=45°,∴∠DBQ=∠CAQ,∵∠A=∠ABC,∴AQ=BQ,∵∠BQD=∠AQC=90°,∴根據(jù)以上條件得△AQC≌△BQD,∴BD=AC,∴EF=AC,故②正確;∵∠A=∠ABC=∠C=45°,∴∠DAC+∠DCA=180°(∠A+∠ABC+∠C)=45°,∴∠ADC=180°(∠DAC+∠DCA)=135°=∠BEF+∠BFE=180°∠ABC,故③∠ADC=∠BEF+∠BFE成立;無法證明AD=CD,故④錯(cuò)誤.故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字3、4、5.從袋子中隨機(jī)取出一個(gè)小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個(gè)小球,用小球上的數(shù)字作為個(gè)位上的數(shù)字,這樣組成一個(gè)兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個(gè)位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲口袋里裝有2個(gè)相同的小球,它們分別寫有數(shù)字1和2;乙口袋里裝有3個(gè)相同的小球,它們分別寫有數(shù)字3,4,5;丙口袋里有2個(gè)相同的小球,它們分別寫有數(shù)字6,7,從三個(gè)口袋中各隨機(jī)地取出1個(gè)小球,按要求解答下列問題:
(1)畫出“樹形圖”;
(2)取出的3個(gè)小球上只有1個(gè)偶數(shù)數(shù)字的概率是多少?
(3)取出的3個(gè)小球上全是奇數(shù)數(shù)字的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,△ADE經(jīng)順時(shí)針旋轉(zhuǎn)后與△ABF重合.
(1)旋轉(zhuǎn)中心是點(diǎn)________,旋轉(zhuǎn)了________度.
(2)如果連接EF,那么△AEF是怎樣的三角形?為什么?
(3)請用尺規(guī)作圖畫出△AEF的外接圓,標(biāo)明圓心M的位置,量出半徑的長度為________,并判斷點(diǎn)C與⊙M的位置關(guān)系為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:
(1)(x+8)2=36;
(2)x(5x+4)-(4+5x)=0;
(3)x2+3=3(x+1);
(4)2x2-x-1=0(用配方法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+c與直線y=3相交于點(diǎn)A,B,與y軸相交于點(diǎn)C(0,﹣1),其中點(diǎn)A的橫坐標(biāo)為﹣4.
(1)計(jì)算a,c的值;
(2)求出拋物線y=ax2+c與x軸的交點(diǎn)坐標(biāo);
(3)利用圖象,當(dāng)0≤ax2+c≤3時(shí),直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OBCD中的三個(gè)頂點(diǎn)在⊙O上,點(diǎn)A是⊙O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、C、D重合).
(1)若點(diǎn)A在優(yōu)弧上,且圓心O在∠BAD的內(nèi)部,已知∠BOD=120°,則∠OBA+∠ODA= °.
(2)若四邊形OBCD為平行四邊形.
①當(dāng)圓心O在∠BAD的內(nèi)部時(shí),求∠OBA+∠ODA的度數(shù);
②當(dāng)圓心O在∠BAD的外部時(shí),請畫出圖形并直接寫出∠OBA與∠ODA的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,拋物線y=x2﹣2x與x軸交于O、B兩點(diǎn),頂點(diǎn)為P,連接OP、BP,直線y=x﹣4與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.
(1)寫出點(diǎn)B坐標(biāo);判斷△OBP的形狀;
(2)將拋物線沿對稱軸平移m個(gè)單位長度,平移的過程中交y軸于點(diǎn)A,分別連接CP、DP;
(i)若拋物線向下平移m個(gè)單位長度,當(dāng)S△PCD= S△POC時(shí),求平移后的拋物線的頂點(diǎn)坐標(biāo);
(ii)在平移過程中,試探究S△PCD和S△POD之間的數(shù)量關(guān)系,直接寫出它們之間的數(shù)量關(guān)系及對應(yīng)的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D,E,F(xiàn)分別是△ABC各邊的中點(diǎn),下列說法中錯(cuò)誤的是( )
A. △ABC與△DEF是相似形 B. △ABC與△AEF是位似圖形 C. EF與AD互相平分 D. AD平分∠BAC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com