【題目】A、BC為數(shù)軸上的三點(diǎn),動(dòng)點(diǎn)A、B同時(shí)從原點(diǎn)出發(fā),動(dòng)點(diǎn)A每秒運(yùn)動(dòng)x個(gè)單位,動(dòng)點(diǎn)B每秒運(yùn)動(dòng)y個(gè)單位,且動(dòng)點(diǎn)A運(yùn)動(dòng)到的位置對(duì)應(yīng)的數(shù)記為a,動(dòng)點(diǎn)B運(yùn)動(dòng)到的位置對(duì)應(yīng)的數(shù)記為b,定點(diǎn)C對(duì)應(yīng)的數(shù)為8

1)若2秒后,a、b滿足|a+8|+|b2|0,則x   y   .并請(qǐng)?jiān)跀?shù)軸上標(biāo)出A、B兩點(diǎn)的位置.

2)若動(dòng)點(diǎn)AB在(1)運(yùn)動(dòng)后的位置上保持原來(lái)的速度,且同時(shí)向正方向運(yùn)動(dòng)z秒后使得|a||b|,使得z   

3)若動(dòng)點(diǎn)A、B在(1)運(yùn)動(dòng)后的位置上都以每秒2個(gè)單位向正方向運(yùn)動(dòng)繼續(xù)運(yùn)動(dòng)t秒,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離為AB,且AC+BC1.5AB,則t   

【答案】14,1,圖詳見(jiàn)解析;(2;(3

【解析】

1)∵|a+8|+b22=0,

a+8=0b2=0,即a=8,b=2

x=|8|÷2=4,y=2÷2=1,

在數(shù)軸上標(biāo)出AB兩點(diǎn)的位置如下圖所示:

故答案為:4,1

2)∵動(dòng)點(diǎn)A、B在(1)運(yùn)動(dòng)后的位置上保持原來(lái)的速度,且同時(shí)向正方向運(yùn)動(dòng)z秒后,

a=8+4z,b=2+z

|a|=|b|,

|8+4z|=|2+z|

∴﹣8+4z+2+z=0或﹣8+4z=2+z

解得:z=z=

故答案為:;

3)若動(dòng)點(diǎn)A、B在(1)運(yùn)動(dòng)后的位置上都以每秒2個(gè)單位向正方向運(yùn)動(dòng)繼續(xù)運(yùn)動(dòng)t秒后,

則點(diǎn)A表示:﹣8+2t,點(diǎn)B表示:2+2t,點(diǎn)C表示:8,

AC=|8+2t8|=|2t16|,BC=|2+2t8|=|2t6|,AB=|8+2t﹣(2+2t|=10

AC+BC=1.5AB,

|2t16|+|2t6|=1.5×10,

分三種情況討論:

①當(dāng)t3時(shí),

16-2t+6-2t=15,

解得:t=

②當(dāng)3t8時(shí),

16-2t+2t-6=1015

方程無(wú)解;

③當(dāng)t8時(shí),

2t-16+2t-6=15

解得:t=

綜上所述:t=t=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同一個(gè)圓的內(nèi)接正方形和正三角形的邊心距的比為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究與發(fā)現(xiàn):

如圖1所示的圖形,像我們常見(jiàn)的學(xué)習(xí)用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖,那么在這一個(gè)簡(jiǎn)單的圖形中,到底隱藏了哪些數(shù)學(xué)知識(shí)呢?下面就請(qǐng)你發(fā)揮你的聰明才智,解決以下問(wèn)題:

(1)觀察規(guī)形圖,試探究∠BDC與∠A、B、C之間的關(guān)系,并說(shuō)明理由;

(2)請(qǐng)你直接利用以上結(jié)論,解決以下三個(gè)問(wèn)題:

①如圖2,把一塊三角尺XYZ放置在ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過(guò)點(diǎn)B、C,若∠A=50°,則∠ABX+ACX=__________°;

②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,DBE=130°,求∠DCE的度數(shù);

③如圖4,ABD,ACD10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=140°,BG1C=77°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算 27a8 a3 9a 2 的順序不正確的是(

A.(27 9)a83 2B.(27a8 a3 ) 9a 2

C.27a8 (a3 9a 2 )D.(27a8 9a 2 ) a3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+cx軸于A、B兩點(diǎn)(AB的左側(cè)),且OA=3,OB=1,與y軸交于C(0,3),拋物線的頂點(diǎn)坐標(biāo)為D(﹣1,4).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)求拋物線的解析式;

(3)過(guò)點(diǎn)D作直線DEy軸,交x軸于點(diǎn)E,點(diǎn)P是拋物線上B、D兩點(diǎn)間的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與B、D兩點(diǎn)重合),PA、PB與直線DE分別交于點(diǎn)F、G,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),EF+EG是否為定值?若是,試求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠BAE+∠AED180°,∠1=∠2,那么∠F=∠G嗎?為什么?

解:因?yàn)椤?/span>BAE+∠AED180°( 已知)

所以ABCD________

所以∠BAE=∠AEC________

因?yàn)椤?/span>1=∠2( 已知)

所以∠BAE—1=∠AEC—2(等式性質(zhì))

即∠3=∠4

所以AFEG________,

所以∠F=∠G________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2014貴州黔東南)黔東南州某超市計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,已知5件甲種玩具的進(jìn)價(jià)與3件乙種玩具的進(jìn)價(jià)的和為231元,2件甲種玩具的進(jìn)價(jià)與3件乙種玩具的進(jìn)價(jià)的和為141元.

(1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元;

(2)如果購(gòu)進(jìn)甲種玩具有優(yōu)惠,優(yōu)惠方法是:購(gòu)進(jìn)甲種玩具超過(guò)20件,超出部分可以享受7折優(yōu)惠.若購(gòu)進(jìn)x(x0)件甲種玩具需要花費(fèi)y元,請(qǐng)你求出yx的函數(shù)關(guān)系式;

(3)(2)的條件下,超市決定在甲、乙兩種玩具中選購(gòu)其中一種,且數(shù)量超過(guò)20件,請(qǐng)你幫助超市判斷購(gòu)進(jìn)哪種玩具省錢(qián).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BA1CA1分別是△ABC的內(nèi)角平分線和外角平分線, BA2是∠A1BD的角平分線,CA2 是∠A1CD的角平分線,BA3是∠A2BD的角平分線,CA3 是∠A2CD的角平分線,若∠A α,則∠A2019______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究函數(shù)y=x+(x>0)與y=x+(x>0,a>0)的相關(guān)性質(zhì).

(1)小聰同學(xué)對(duì)函數(shù)y=x+(x>0)進(jìn)行了如下列表、描點(diǎn),請(qǐng)你幫他完成連線的步驟;觀察圖象可得它的最小值為   ,它的另一條性質(zhì)為   ;

x

1

2

3

y

2

(2)請(qǐng)用配方法求函數(shù)y=x+(x>0)的最小值;

(3)猜想函數(shù)y=x+(x>0,a>0)的最小值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案