【題目】如圖,已知一個(gè)直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點(diǎn),連接EF.

(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,且使S四邊形ECBF=3S△EDF,求AE的長(zhǎng);

(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在BC邊上的點(diǎn)M處,且使MF∥CA.

①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;

②求EF的長(zhǎng);

(3)如圖③,若FE的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)N,CN=1,CE=,求的值.

【答案】(1);(2)四邊形AEMF為菱形,理由詳見解析;;(3)

【解析】

試題分析:(1)先利用折疊的性質(zhì)得到EF⊥AB,△AEF≌△DEF,則S△AEF≌S△DEF,則易得S△ABC=4S△AEF,再證明Rt△AEF∽R(shí)t△ABC,然后根據(jù)相似三角形的性質(zhì)得到=(2,再利用勾股定理求出AB即可得到AE的長(zhǎng);(2)①通過證明四條邊相等判斷四邊形AEMF為菱形;

②連結(jié)AM交EF于點(diǎn)O,如圖②,設(shè)AE=x,則EM=x,CE=4﹣x,先證明△CME∽△CBA得到==,解出x后計(jì)算出CM=,再利用勾股定理計(jì)算出AM,然后根據(jù)菱形的面積公式計(jì)算EF;

(3)如圖③,作FH⊥BC于H,先證明△NCE∽△NFH,利用相似比得到FH:NH=4:7,設(shè)FH=4x,NH=7x,則CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,再證明△BFH∽△BAC,利用相似比可計(jì)算出x=,則可計(jì)算出FH和BH,接著利用勾股定理計(jì)算出BF,從而得到AF的長(zhǎng),于是可計(jì)算出的值.

試題解析:(1)如圖①,

∵△ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,

∴EF⊥AB,△AEF≌△DEF,

∴S△AEF≌S△DEF,

∵S四邊形ECBF=3S△EDF,

∴S△ABC=4S△AEF,

在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,

∴AB==5,

∵∠EAF=∠BAC,

∴Rt△AEF∽R(shí)t△ABC,

=(2,即(2=,

∴AE=

(2)①四邊形AEMF為菱形.理由如下:

如圖②,∵△ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,

∴AE=EM,AF=MF,∠AFE=∠MFE,

∵M(jìn)F∥AC,

∴∠AEF=∠MFE,

∴∠AEF=∠AFE,

∴AE=AF,

∴AE=EM=MF=AF,

∴四邊形AEMF為菱形;

②連結(jié)AM交EF于點(diǎn)O,如圖②,

設(shè)AE=x,則EM=x,CE=4﹣x,

∵四邊形AEMF為菱形,

∴EM∥AB,

∴△CME∽△CBA,

==,即==,解得x=,CM=,

在Rt△ACM中,AM===,

∵S菱形AEMF=EFAM=AECM,

∴EF=2×=;

(3)如圖③,作FH⊥BC于H,

∵EC∥FH,

∴△NCE∽△NFH,

∴CN:NH=CE:FH,即1:NH=:FH,

∴FH:NH=4:7,

設(shè)FH=4x,NH=7x,則CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,

∵FH∥AC,

∴△BFH∽△BAC,

∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=

∴FH=4x=,BH=4﹣7x=

在Rt△BFH中,BF==2,

∴AF=AB﹣BF=5﹣2=3,

=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各數(shù)中,比﹣2小的數(shù)是(
A.﹣3
B.﹣1
C.0
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平移是由平移的和平移的決定的,所以在平移作圖時(shí),首先要明確圖形原來的位置及平移的,再進(jìn)行畫圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南海是我國(guó)的南大門,如圖所示,某天我國(guó)一艘海監(jiān)執(zhí)法船在南海海域正在進(jìn)行常態(tài)化巡航,在A處測(cè)得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向正東方向航行,便迅速沿北偏東75°的方向前往監(jiān)視巡查,經(jīng)過一段時(shí)間后,在C處成功攔截不明船只,問我海監(jiān)執(zhí)法船在前往監(jiān)視巡查的過程中行駛了多少海里(最后結(jié)果保留整數(shù))?

(參考數(shù)據(jù):cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)數(shù)的平方根為2a+3a-15,則這個(gè)數(shù)是(

A.-18B.64C.121D.以上結(jié)論都不是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項(xiàng)式3a2-ab3+18的次數(shù)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算a5·a3正確的是( )

A. a2 B. a8 C. a10 D. a15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:3x2﹣3y2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a、b、c是三角形三邊的長(zhǎng),則代數(shù)式(a-b)2-c2的值是 (  )

A. 大于零 B. 小于零 C. 大于或等于零 D. 小于或等于零

查看答案和解析>>

同步練習(xí)冊(cè)答案