(本題8分) 如圖,王強(qiáng)在一次高爾夫球的練習(xí)中,在某處擊球,其飛行路線滿足拋物線,其中(m)是球的飛行高度,(m)是球飛出的水平距離,結(jié)果球離球洞的水平距離還有2m.

(1)請(qǐng)寫出拋物線的開(kāi)口方向、頂點(diǎn)坐標(biāo)、對(duì)稱軸.
(2)請(qǐng)求出球飛行的最大水平距離.
(3)若王強(qiáng)再一次從此處擊球,要想讓球飛行的最大高度不變且球剛好進(jìn)洞,則球飛行路線應(yīng)滿足怎樣的拋物線,求出其解析式.
解:
∴拋物線開(kāi)口向下,頂點(diǎn)為,對(duì)稱軸為x=4.
(2)令y=0,得
解得x1=0,x2=8.∴球飛行的最大水平距離是8m.
(3)要讓球剛好進(jìn)洞而飛行最大高度不變,則球飛行的最大水平距離為10m.
∴拋物線的對(duì)稱軸為x=5,頂點(diǎn)為
設(shè)此時(shí)對(duì)應(yīng)的拋物線解析式為
又∵點(diǎn)(0,0)在此拋物線上,
,即解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題12分).如圖,在長(zhǎng)為32 m,寬為20 m的矩形地面上修建同樣寬度的道路
(圖中陰影部分),余下的部分種植草坪,要使草坪的面積為540m2,求道路的寬?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題7分)如圖,在梯形ABCD中,AD∥BC,M,N分別是AD,BC的中點(diǎn),E,F(xiàn)分別是BM,CM的中點(diǎn).

【小題1】(1)證明四邊形MENF是平行四邊形;
【小題2】(2)若使四邊形MENF是菱形,還需在梯形ABCD中添加什么條件?請(qǐng)你寫出這個(gè)條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題10分).如圖,已知點(diǎn)D為等腰直角△ABC內(nèi)一點(diǎn),∠CAD=∠CBD=15°,E為AD延長(zhǎng)線上的一點(diǎn),且CE=CA.

【小題1】(1)求證:DE平分∠BDC;
【小題2】(2)若點(diǎn)M在DE上,且DC=DM,求證:ME=BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年浙江省金華市浦江六中上學(xué)期九年級(jí)月考數(shù)學(xué)卷 題型:解答題

、(本題8分)如圖,CD為⊙O的直徑,點(diǎn)A在⊙O上,過(guò)點(diǎn)A作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)F。已知∠F=30°。

【小題1】(1)求∠C的度數(shù);
【小題2】⑵若點(diǎn)B在⊙O上,ABCD,垂足為EAB,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2014屆浙江省建德市八年級(jí)3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題10分)

如圖,在△ABC中,∠C=90º,BC=5米,AB=10米.M點(diǎn)在線段CA上,從C向A運(yùn)動(dòng),速度為1米/秒;同時(shí)N點(diǎn)在線段AB上,從A向B運(yùn)動(dòng),速度為2米/秒.運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t為何值時(shí),△AMN的面積為6米2

(2)當(dāng)t為何值時(shí),△AMN的面積最大?并求出這個(gè)最大值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案