【題目】如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點D,點E在邊AC上,且滿足ED=EA.

(1)求∠DOA的度數(shù)。
(2)求證:直線EDO相切.

【答案】
(1)

解;∵∠DBA=50°,

∴∠DOA=2∠DBA=100°


(2)

證明:連接OE.

在△EAO與△EDO中,

,

∴△EAO≌△EDO,

∴∠EDO=∠EAO,

∵∠BAC=90°,

∴∠EDO=90°,

∴DE與⊙O相切.


【解析】(1)根據(jù)圓周角定理即可得到結(jié)論;
(2)連接OE,通過△EAO≌△EDO,即可得到∠EDO=90°,于是得到結(jié)論.
【考點精析】認真審題,首先需要了解切線的判定定理(切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店以6元/千克的價格購進某種干果1140千克,并對其進行篩選分成甲級干果與乙級干果后同時開始銷售.這批干果銷售結(jié)束后,店主從銷售統(tǒng)計中發(fā)現(xiàn):甲級干果與乙級干果在銷售過程中每天都有銷量,且在同一天賣完;甲級干果從開始銷售至銷售的第x天的總銷量y1(千克)與x的關(guān)系為y1=﹣x2+40x;乙級干果從開始銷售至銷售的第t天的總銷量y2(千克)與t的關(guān)系為y2=at2+bt,且乙級干果的前三天的銷售量的情況見下表:

t

1

2

3

y2

21

44

69


(1)求a、b的值;
(2)若甲級干果與乙級干果分別以8元/千克和6元/千克的零售價出售,則賣完這批干果獲得的毛利潤是多少元?
(3)問從第幾天起乙級干果每天的銷量比甲級干果每天的銷量至少多6千克? (說明:毛利潤=銷售總金額﹣進貨總金額.這批干果進貨至賣完的過程中的損耗忽略不計)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點C的切線交AB的延長線于點D,若BD=,則∠ACD= .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“愛滿揚州”慈善一日捐活動中,學校團總支為了了解本校學生的捐款情況,隨機抽取了50名學生的捐款數(shù)進行了統(tǒng)計,并繪制成統(tǒng)計圖.

(1)這50名同學捐款的眾數(shù)為 元,中位數(shù)為 元。
(2)求這50名同學捐款的平均數(shù)。
(3)該校共有600名學生參與捐款,請估計該校學生的捐款總數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數(shù)圖象大致是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,將拋物線y=x2的對稱軸繞著點P(0,2)順時針旋轉(zhuǎn)45°后與該拋物線交于A、B兩點,點Q是該拋物線上一點.

(1)求直線AB的函數(shù)表達式。
(2)如圖①,若點Q在直線AB的下方,求點Q到直線AB的距離的最大值
(3)如圖②,若點Q在y軸左側(cè),且點T(0,t)(t<2)是射線PO上一點,當以P、B、Q為頂點的三角形與△PAT相似時,求所有滿足條件的t的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市為促銷,決定對A,B兩種商品進行打折出售.打折前,買6件A商品和3件B商品需要54元,買3件A商品和4件B商品需要32元;打折后,買50件A商品和40件B商品僅需364元,這比打折前少花多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AD、BE分別是△ABC的中線和角平分線,AD⊥BE,AD=BE=6,則AC的長等于 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點D在邊BC 上,以AD為折痕△ABD折疊得到△AB′D,AB′與邊BC交于點E.若△DEB′為直角三角形,則BD的長是

查看答案和解析>>

同步練習冊答案