【題目】如圖,在△ABC中,∠C=90°,以AB上一點(diǎn)O為圓心,OA長(zhǎng)為半徑的圓恰好與BC相切于點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).
(1)若∠B=30°,求證:以A,O,D,E為頂點(diǎn)的四邊形是菱形;
(2)填空:若AC=6,AB=10,連接AD,則⊙O的半徑為 ,AD的長(zhǎng)為 .
【答案】(1) 見(jiàn)解析;(2)
【解析】
(1) 先通過(guò)證明△AOE為等邊三角形, 得出AE=OD, 再根據(jù)“同位角相等, 兩直線平行” 證明AE//OD, 從而證得四邊形AODE是平行四邊形, 再根據(jù) “一組鄰邊相等的平行四邊形為菱形” 即可得證.
(2) 利用在Rt△OBD中,sin∠B==可得出半徑長(zhǎng)度,在Rt△ODB中BD=,可求得BD的長(zhǎng),由CD=CB﹣BD可得CD的長(zhǎng),在RT△ACD中,AD=,即可求出AD長(zhǎng)度.
解:(1)證明:
連接OE、ED、OD,
在Rt△ABC中,∵∠B=30°,
∴∠A=60°,
∵OA=OE,∴△AEO是等邊三角形,
∴AE=OE=AO
∵OD=OA,
∴AE=OD
∵BC是圓O的切線,OD是半徑,
∴∠ODB=90°,又∵∠C=90°
∴AC∥OD,又∵AE=OD
∴四邊形AODE是平行四邊形,
∵OD=OA
∴四邊形AODE是菱形.
(2)
在Rt△ABC中,∵AC=6,AB=10,
∴sin∠B==,BC=8
∵BC是圓O的切線,OD是半徑,
∴∠ODB=90°,
在Rt△OBD中,sin∠B==,
∴OB=OD
∵AO+OB=AB=10,
∴OD+OD=10
∴OD=
∴OB=OD=
∴BD=
=5
∴CD=CB﹣BD=3
∴AD=
=
=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°后,得到線段AB′,則點(diǎn)B′的坐標(biāo)為_(kāi)_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示的圖形,像我們常見(jiàn)的符號(hào)——箭號(hào).我們不妨把這樣圖形叫做“箭頭四角形”.
探究:
(1)觀察“箭頭四角形”,試探究與、、之間的關(guān)系,并說(shuō)明理由;
應(yīng)用:
(2)請(qǐng)你直接利用以上結(jié)論,解決以下兩個(gè)問(wèn)題:
①如圖2,把一塊三角尺放置在上,使三角尺的兩條直角邊、恰好經(jīng)過(guò)點(diǎn)、,若,則 ;
②如圖3,、的2等分線(即角平分線)、相交于點(diǎn),若,
,求的度數(shù);
拓展:
(3)如圖4,,分別是、的2020等分線(),它們的交點(diǎn)從上到下依次為、、、…、.已知,,則 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,B、A、F三點(diǎn)在同一直線上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.
請(qǐng)你用其中兩個(gè)作為條件,另一個(gè)作為結(jié)論,構(gòu)造一個(gè)真命題,并證明.
己知:______________________________________________________.
求證:______________________________________________________.
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在中,,
(1)用尺規(guī)在邊BC上求作一點(diǎn)P,使;(不寫(xiě)作法,保留作圖痕跡)
(2)連接AP當(dāng)為多少度時(shí),AP平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)和點(diǎn)是坐標(biāo)軸上兩點(diǎn),點(diǎn)為坐標(biāo)軸上一點(diǎn),若三角形的面積為,則點(diǎn)坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明平時(shí)喜歡玩“開(kāi)心消消樂(lè)”游戲,本學(xué)期在學(xué)校組織的幾次數(shù)學(xué)反饋性測(cè)試中,小明的數(shù)學(xué)成績(jī)?nèi)缦卤?/span>:
月份 | (第二年元月) | (第二年2月) | ||||
成績(jī)(分) | ··· | ··· |
(1)以月份為x軸,成績(jī)?yōu)?/span>y軸,根據(jù)上表提供的數(shù)據(jù)在平面直角坐標(biāo)系中描點(diǎn);
(2)觀察(1)中所描點(diǎn)的位置關(guān)系,猜想與之間的的函數(shù)關(guān)系,并求出所猜想的函數(shù)表達(dá)式;
(3)若小明繼續(xù)沉溺于“開(kāi)心消消樂(lè)“游戲,照這樣的發(fā)展趨勢(shì),請(qǐng)你估計(jì)元月(此時(shí))份的考試中小明的數(shù)學(xué)成績(jī),并用一句話對(duì)小明提出一些建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,以AB上一點(diǎn)O為圓心,OA長(zhǎng)為半徑的圓恰好與BC相切于點(diǎn)D,分別交AC、AB于點(diǎn)E、F.
(1)若∠B=30°,求證:以A、O、D、E為頂點(diǎn)的四邊形是菱形.
(2)若AC=6,AB=10,連結(jié)AD,求⊙O的半徑和AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,正比例函數(shù)的圖象與反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn).
()分別求這兩個(gè)函數(shù)的表達(dá)式.
()將直線向上平移個(gè)單位長(zhǎng)度后與軸交于點(diǎn),與反比例函數(shù)圖象在第四象限內(nèi)的交點(diǎn)為,連接、,求點(diǎn)的坐標(biāo)及的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com