【題目】如圖,△ABC內(nèi)接于⊙O,過點B的切線BE∥AC,點P是優(yōu)弧AC上一動點(不與A,C重合),連接PA,PB,PC,PB交AC于D.
(1)求證:PB平分∠APC;
(2)當(dāng)PD=3,PB=4時,求AB的長.
【答案】(1)證明見解析;(2)AB=2.
【解析】
(1)根據(jù)切線的性質(zhì)和平行線的性質(zhì)證得∠BAC=∠ACB,得出=,即可證得結(jié)論;
(2)通過證得△ABD∽△PBA,根據(jù)相似三角形的性質(zhì)即可求得.
(1)證明:∵BE是⊙O的切線,
∴∠EBC=∠BAC,
∵BE∥AC,
∴∠EBC=∠ACB,
∴∠BAC=∠ACB,
∴AB=BC,
∴=,
∴∠APB=∠CPB,
∴PB平分∠APC;
(2)解:∵∠APB=∠CPB,∠BAD=∠CPB,
∴∠BAD=∠APB,
∵∠ABP=∠DBA,
∴△ABD∽△PBA,
∴,
∴AB2=PBBD=PB(PB﹣PD)=4×1=4,
∴AB=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸負半軸相交于點A,與y軸正半軸相交于點B,,直線l過A、B兩點,點D為線段AB上一動點,過點D作軸于點C,交拋物線于點E.
(1)求拋物線的解析式;
(2)若拋物線與x軸正半軸交于點F,設(shè)點D的橫坐標(biāo)為x,四邊形FAEB的面積為S,請寫出S與x的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標(biāo);如果不存在,請說明理由.
(3)連接BE,是否存在點D,使得和相似?若存在,求出點D的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓市民享受到更多的優(yōu)惠,某市針對乘坐地鐵的人群進行了調(diào)查.
(1)為獲得乘坐地鐵人群的月均花費信息,下列調(diào)查方式中比較合理的是 ;
A.對某小區(qū)的住戶進行問卷調(diào)查
B.對某班的全體同學(xué)進行問卷調(diào)查
C.在市里的不同地鐵站,對進出地鐵的人進行問卷調(diào)查
(2)調(diào)查小組隨機調(diào)查了該市1000人上一年乘坐地鐵的月均花費(單位:元),繪制了頻數(shù)分布直方圖,如圖所示.
① 根據(jù)圖中信息,估計平均每人乘坐地鐵的月均花費的范圍是 元;
A.20—60 B.60—120 C.120—180
②為了讓市民享受到更多的優(yōu)惠,相關(guān)部門擬確定一個折扣線,計劃使30%左右的人獲得折扣優(yōu)惠.根據(jù)圖中信息,乘坐地鐵的月均花費達到 元的人可以享受折扣.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸、y軸的交點為A,B.按以下步驟作圖:①以點A為圓心,適當(dāng)長度為半徑作弧,分別交AB,x軸于點C,D;②分別以點C,D為圓心,大于的長為半徑作弧,兩弧在∠OAB內(nèi)交于點M;③作射線AM,交y軸于點E.則點E的坐標(biāo)為( )
A.(0,)B.(0,)C.(0,)D.(0,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月份,十八中九年級學(xué)生參加了中考體育模擬考試,為了了解該校九年級(1)班同學(xué)的中考體育情況,對全班學(xué)生的中考體育成績進行了統(tǒng)計,并繪制以下不完整的頻數(shù)分布表和扇形統(tǒng)計圖,根據(jù)圖表中的信息解答下列問題:
分組 | 分數(shù)段(分)) | 頻數(shù) |
A | 26≤x<31 | 2 |
B | 31≤x<36 | 5 |
C | 36≤x<41 | 15 |
D | 41≤x<46 | m |
E | 46≤x<51 | 10 |
(1)求全班學(xué)生人數(shù)和m的值.
(2)求扇形統(tǒng)計圖中的E對應(yīng)的扇形圓心角的度數(shù);
(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機選取2人到八年級進行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A為某封閉圖形邊界上一定點,動點P從點A出發(fā),沿其邊界順時針勻速運動一周,設(shè)點P運動的時間為x,線段AP的長為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖所示,則該封閉圖形可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點,拋物線y1=ax2+bx+c(a≠0)與x軸相交于點A(x1,0),B(x2,0),與y軸交于點C,且O,C兩點間的距離為3,x1x2<0,|x1|+|x2|=4,點A,C在直線y2=-3x+t上.
(1)求點C的坐標(biāo);
(2)當(dāng)y1隨著x的增大而增大時,求自變量x的取值范圍;
(3)將拋物線y1向左平移n(n>0)個單位,記平移后y隨著x的增大而增大的部分為P,直線y2向下平移n個單位,當(dāng)平移后的直線與P有公共點時,求2n2-5n的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線C1:y=ax2+bx-1經(jīng)過點A(-2,1)和點B(-1,-1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點N,與拋物線C2交于點M.
(1)求拋物線C1的表達式;
(2)直接用含t的代數(shù)式表示線段MN的長;
(3)當(dāng)△AMN是以MN為直角邊的等腰直角三角形時,求t的值;
(4)在(3)的條件下,設(shè)拋物線C1與y軸交于點P,點M在y軸右側(cè)的拋物線C2上,連接AM交y軸于點K,連接KN,在平面內(nèi)有一點Q,連接KQ和QN,當(dāng)KQ=1且∠KNQ=∠BNP時,請直接寫出點Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com