已知拋物線,
(1)若求該拋物線與x軸的交點坐標;
(2)若 ,證明拋物線與x軸有兩個交點;
(3)若且拋物線在區(qū)間上的最小值是-3,求b的值.

(1)(-1,0)和(,0);(2)證明見解析;(3)3或

解析試題分析:(1)將a、b、c的值代入,可得出拋物線解析式,從而可求解拋物線與x軸的交點坐標.
(2)把代入拋物線解析式,表示出方程的判別式的表達式,利用配方法及完全平方的非負性即可判斷出結論.
(3),則拋物線可化為,其對稱軸為x=-b,以-1≤x≤2為區(qū)間,討論b的取值,根據(jù)最小值為-3,可得出方程,求出b的值即可.
(1)當時,拋物線為,
∵方程的兩個根為x1=-1,x2=,
∴該拋物線與x軸交點的坐標是(-1,0)和(,0).
(2)當時,拋物線,
設y=0,則,
,
∴拋物線與x軸有兩個交點.
(3),則拋物線可化為,其對稱軸為x=-b,
當-b<-2時,即b>2,則有拋物線在x=-2時取最小值為-3,
此時-3=(-2)2+2×(-2)b+b+2,
解得:b=3,符合題意.
當-b>2時,即b<-2,則有拋物線在x=2時取最小值為-3,
此時-3=22+2×2b+b+2,
解得:b=,不合題意,舍去.
當-2≤-b≤2時,即-2≤b≤2,則有拋物線在x=-b時取最小值為-3,
此時-3=(-b)2+2×(-b)b+b+2,
化簡得:b2-b-5=0,
解得:b1=(不合題意,舍去),b2=.
綜上可得:b=3或b=
考點:1.拋物線與x軸的交點;2.二次函數(shù)的最值;3.分類思想的應用.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,二次函數(shù)的圖象經(jīng)過(,0)和(,0)兩點.
(1)求此二次函數(shù)的表達式.
(2)直接寫出當<x<1時,y的取值范圍.
(3)將一次函數(shù) y=(1-m)x+2的圖象向下平移m個單位后,與二次函數(shù)圖象交點的橫坐標分別是a和b,其中a<2<b,試求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知拋物線y=ax2+2x+c的頂點為A(―1,―4),與y軸交于點B,與x軸負半軸交于點C.

(1)求這條拋物線的函數(shù)關系式;
(2)點P為第三象限內(nèi)拋物線上的一動點,連接BC、PC、PB,求△BCP面積的最大值,并求出此時點P的坐標;
(3)點E為拋物線上的一點,點F為x軸上的一點,若四邊形ABEF為平行四邊形,請直接寫出所有符合條件的點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線經(jīng)過A(,0),C(2,-3)兩點,與y軸交于點D,與x軸交于另一點B.
(1)求此拋物線的解析式及頂點坐標;
(2)若將此拋物線平移,使其頂點為點D,需如何平移?寫出平移后拋物線的解析式;
(3)過點P(m,0)作x軸的垂線(1≤m≤2),分別交平移前后的拋物線于點E,F(xiàn),交直線OC于點G,求證:PF=EG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,拋物線與x軸交于點A(-2,0)和點B,與y軸交于點C(0,),線段AC上有一動點P從點A出發(fā),以每秒1個單位長度的速度向點C移動,線段AB上有另一個動點Q從點B出發(fā),以每秒2個單位長度的速度向點A移動,兩動點同時出發(fā),設運動時間為t秒.
(1)求該拋物線的解析式;
(2)在整個運動過程中,是否存在某一時刻,使得以A,P,Q為頂點的三角形與△AOC相似?如果存在,請求出對應的t的值;如果不存在,請說明理由.
(3)在y軸上有兩點M(0,m)和N(0,m+1),若要使得AM+MN+NP的和最小,請直接寫出相應的m、t的值以及AM+MN+NP的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在氣候?qū)θ祟惿鎵毫θ遮吋哟蟮慕裉,發(fā)展低碳經(jīng)濟,全面實現(xiàn)低碳生活成為人們的共識,某企業(yè)采用技術革新,節(jié)能減排,經(jīng)分析前5個月二氧化碳排放量y(噸)與月份x(月)之間的函數(shù)關系是y=-2x+50.
(1)隨著二氧化碳排放量的減少,每排放一噸二氧化碳,企業(yè)相應獲得的利潤也有所提高,且相應獲得的利潤p(萬元)與月份x(月)的函數(shù)關系如圖所示,那么哪月份,該企業(yè)獲得的月利潤最大?最大月利潤是多少萬元?
(2)受國家政策的鼓勵,該企業(yè)決定從6月份起,每月二氧化碳排放量在上一個月的基礎上都下降a%,與此同時,每排放一噸二氧化碳,企業(yè)相應獲得的利潤在上一個月的基礎上都增加50%,要使今年6、7月份月利潤的總和是今年5月份月利潤的3倍,求a的值(精確到個位).
(參考數(shù)據(jù):=7.14,=7.21,=7.28,=7.35)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,△ABC的邊AB在x軸上,∠ABC=90°,AB=BC,OA=1,OB=4,拋物
經(jīng)過A、C兩點.
(1)求拋物線的解析式及其頂點坐標;
(2)如圖①,點P是拋物線上位于x軸下方的一點,點Q與點P關于拋物線的對稱軸對稱,過點P、Q分別向x軸作垂線,垂足為點D、E,記矩形DPQE的周長為d,求d的最大值,并求出使d最大值時點P的坐標;
(3)如圖②,點M是拋物線上位于直線AC下方的一點,過點M作MF⊥AC于點F,連接MC,作MN∥BC交直線AC于點N,若MN將△MFC的面積分成2:3兩部分,請確定M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,點A坐標為(-2,0),點B坐標為(0,2),點E為線段AB上的動點(點E不與點A,B重合),以E為頂點作∠OET=45°,射線ET交線段OB于點F,C為y軸正半軸上一點,且OC=AB,拋物線y=x2+mx+n的圖象經(jīng)過A,C兩點.

(1)求此拋物線的函數(shù)表達式;
(2)求證:∠BEF=∠AOE;
(3)當△EOF為等腰三角形時,求此時點E的坐標;
(4)在(3)的條件下,當直線EF交x軸于點D,P為(1)中拋物線上一動點,直線PE交x軸于點G,在直線EF上方的拋物線上是否存在一點P,使得△EPF的面積是△EDG面積的()倍.若存在,請直接寫出點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線經(jīng)過點,且與軸交于點、點,若

(1)求此拋物線的解析式;
(2)若拋物線的頂點為,點是線段上一動點(不與點重合),,射線與線段交于點,當△為等腰三角形時,求點的坐標.

查看答案和解析>>

同步練習冊答案