如圖所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于點(diǎn)D,且AB=4,BD=5,則點(diǎn)D到BC的距離是( )

A.3
B.4
C.5
D.6
【答案】分析:先根據(jù)勾股定理求出AD的長(zhǎng)度,再根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì)解答.
解答:解:過(guò)D點(diǎn)作DE⊥BC于E.
∵∠A=90°,AB=4,BD=5,
∴AD===3,
∵BD平分∠ABC,∠A=90°,
∴點(diǎn)D到BC的距離=AD=3.
故選A.
點(diǎn)評(píng):本題利用勾股定理和角平分線的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于點(diǎn)D,且AB=4,BD=5,則點(diǎn)D到BC的距離是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=55°,則∠DCB=
55
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖所示,在Rt△ABC中,∠C=90°,∠A=30°.作AB的中垂線l分別交AB、AC及BC的延長(zhǎng)線于點(diǎn)D、E、F,連接BE. 求證:EF=2DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C為圓心,R為半徑所得的圓與斜邊AB只有一個(gè)公共點(diǎn),則R的取值范圍是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在Rt△ABC中,AD平分∠BAC,交BC于D,CH⊥AB于H,交AD于F,DE⊥AB垂足為E,求證:四邊形CFED是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案