(1)按語(yǔ)句作圖并回答:
作線段AC(AC=4),以A為圓心a為半徑作圓,再以C為圓心b為半徑作圓(a<4,b<4,圓A與圓C交于B、D兩點(diǎn)),連接AB、BC、CD、DA.
若能作出滿(mǎn)足要求的四邊形ABCD,則a、b應(yīng)滿(mǎn)足什么條件?
(2)若a=2,b=3,求四邊形ABCD的面積.
【答案】分析:(1)根據(jù)題意畫(huà)出圖形,只有兩圓相交,才能得出四邊形,即可得出答案;
(2)連接BD,根據(jù)相交兩圓的性質(zhì)得出DB⊥AC,BE=DE,設(shè)CE=a,則AE=4-a,根據(jù)勾股定理得出關(guān)于a的方程,求出a,根據(jù)三角形的面積公式求出即可.
解答:(1)解:
能作出滿(mǎn)足要求的四邊形ABCD,則a、b應(yīng)滿(mǎn)足的條件是a<4,b<4,4<a+b<8且|a-b|<4.

(2)解:連接BD,交AC于E,
∵⊙A與⊙C交于B、D,
∴AC⊥DB,BE=DE,
設(shè)CE=x,則AE=4-x,
∵由勾股定理得:BE2=32-x2=22-(4-x)2,
解得:x=,
∴BE==
則四邊形ABCD的面積是2××AC×BE=4×=,
答:四邊形ABCD的面積是
點(diǎn)評(píng):本題考查了作圖-復(fù)雜作圖,相交兩圓的性質(zhì),勾股定理的應(yīng)用,通過(guò)做此題培養(yǎng)了學(xué)生的動(dòng)手操作能力和計(jì)算能力,題目具有一定的代表性,是一道比較好的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•佛山)(1)按語(yǔ)句作圖并回答:
作線段AC(AC=4),以A為圓心a為半徑作圓,再以C為圓心b為半徑作圓(a<4,b<4,圓A與圓C交于B、D兩點(diǎn)),連接AB、BC、CD、DA.
若能作出滿(mǎn)足要求的四邊形ABCD,則a、b應(yīng)滿(mǎn)足什么條件?
(2)若a=2,b=3,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)按語(yǔ)句作圖并回答:

      作線段AC(AC=4),以A為圓心a為半徑作圓,再以C為圓心b為半徑作圓(,,圓A與圓C交于B、D兩點(diǎn)),連結(jié)AB、BC、CD、DA.

   若能作出滿(mǎn)足要求的四邊形ABCD,則應(yīng)滿(mǎn)足什么條件?

 (2)若,求邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(廣東佛山卷)數(shù)學(xué)(解析版) 題型:解答題

(1)按語(yǔ)句作圖并回答:

      作線段AC(AC=4),以A為圓心a為半徑作圓,再以C為圓心b為半徑作圓(,,圓A與圓C交于B、D兩點(diǎn)),連結(jié)AB、BC、CD、DA.若能作出滿(mǎn)足要求的四邊形ABCD,則應(yīng)滿(mǎn)足什么條件?

 (2)若,求四邊形ABCD的面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年廣東省佛山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1)按語(yǔ)句作圖并回答:
作線段AC(AC=4),以A為圓心a為半徑作圓,再以C為圓心b為半徑作圓(a<4,b<4,圓A與圓C交于B、D兩點(diǎn)),連接AB、BC、CD、DA.
若能作出滿(mǎn)足要求的四邊形ABCD,則a、b應(yīng)滿(mǎn)足什么條件?
(2)若a=2,b=3,求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案